ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent observational and theoretical studies of classical Be stars have established the utility of polarization color diagrams (PCD) in helping to constrain the time-dependent mass decretion rates of these systems. We expand on our pilot observationa l study of this phenomenon, and report the detailed analysis of a long-term (1989-2004) spectropolarimetric survey of 9 additional classical Be stars, including systems exhibiting evidence of partial disk-loss/disk-growth episodes as well as systems exhibiting long-term stable disks. After carefully characterizing and removing the interstellar polarization along the line of sight to each of these targets, we analyze their intrinsic polarization behavior. We find that many steady-state Be disks pause at the top of the PCD, as predicted by theory. We also observe sharp declines in the Balmer jump polarization for later spectral type, near edge-on steady-state disks, again as recently predicted by theory, likely caused when the base density of the disk is very high, and the outer region of the edge-on disk starts to self absorb a significant number of Balmer jump photons. The intrinsic $V$-band polarization and polarization position angle of $gamma$ Cas exhibits variations that seem to phase with the orbital period of a known one-armed density structure in this disk, similar to the theoretical predictions of Halonen & Jones. We also observe stochastic jumps in the intrinsic polarization across the Balmer jump of several known Be+sdO systems, and speculate that the thermal inflation of part of the outer region of these disks could be responsible for producing this observational phenomenon. Finally, we estimate the base densities of this sample of stars to be between $approx 8times 10^{-11}$ to $approx 4 times 10^{-12},rm g cm^{-3}$ during quasi steady state periods given there maximum observed polarization.
We analyze the intrinsic polarization of two classical Be stars in the process of losing their circumstellar disks via a Be to normal B star transition originally reported by Wisniewski et al. During each of five polarimetric outbursts which interrup t these disk-loss events, we find that the ratio of the polarization across the Balmer jump (BJ+/BJ-) versus the V-band polarization traces a distinct loop structure as a function of time. Since the polarization change across the Balmer jump is a tracer of the innermost disk density whereas the V-band polarization is a tracer of the total scattering mass of the disk, we suggest such correlated loop structures in Balmer jump-V band polarization diagrams (BJV diagrams) provide a unique diagnostic of the radial distribution of mass within Be disks. We use the 3-D Monte Carlo radiation transfer code HDUST to reproduce the observed clockwise loops simply by turning on/off the mass decretion from the disk. We speculate that counter-clockwise loop structures we observe in BJV diagrams might be caused by the mass decretion rate changing between subsequent on/off sequences. Applying this new diagnostic to a larger sample of Be disk systems will provide insight into the time-dependent nature of each systems stellar decretion rate.
In Wisniewski et al. 2010, paper I, we analyzed 15 years of spectroscopic and spectropolarimetric data from the Ritter and Pine Bluff Observatories of 2 Be stars, 60 Cygni and {pi} Aquarii, when a transition from Be to B star occurred. Here we anayli ze the intrinsic polarization, where we observe loop-like structures caused by the rise and fall of the polarization Balmer Jump and continuum V-band polarization being mismatched temporally with polarimetric outbursts. We also see polarization angle deviations from the mean, reported in paper I, which may be indicative of warps in the disk, blobs injected at an inclined orbit, or spiral density waves. We show our ongoing efforts to model time dependent behavior of the disk to constrain the phenomena, using 3D Monte Carlo radiative transfer codes.
(Abridged) Classical Be stars occasionally transition from having a gaseous circumstellar disk (Be phase) to a state in which all observational evidence for the presence of these disks disappears (normal B-star phase). We present one of the most comp rehensive spectropolarimetric views to date of such a transition for two Be stars, pi Aquarii and 60 Cygni. 60 Cygs disk loss episode was characterized by a monotonic decrease in emission strength over a time-scale of 1000 days, consistent with the viscous time-scale of the disk, assuming alpha is 0.14. pi Aqrs disk loss was episodic in nature and occurred over a time-scale of 2440 days. An observed time lag between the behavior of the polarization and H-alpha in both stars indicates the disk clearing proceeded in an inside-out manner. We determine the position angle of the intrinsic polarization to be 166.7 +/- 0.1 degrees for pi Aqr and 107.7 +/- 0.4 degrees for 60 Cyg, and model the observed polarization during the quiescent diskless phase of each star to determine the interstellar polarization along the line of sight. Minor outbursts observed during the quiescent phase of each star shared similar lifetimes as those previously reported for mu Cen, suggesting that the outbursts represent the injection and subsequent viscous dissipation of individual blobs of material into the inner circumstellar environments of these stars. We also observe deviations from the mean intrinsic polarization position angle during polarization outbursts in each star, indicating deviations from axisymmetry. We propose that these deviations might be indicative of the injection (and subsequent circularization) of new blobs into the inner disk, either in the plane of the bulk of the disk material or in a slightly inclined (non-coplanar) orbit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا