ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Hubble Space Telescope (HST) photometry to measure star formation histories, we age-date the stellar populations surrounding supernova remnants (SNRs) in M31 and M33. We then apply stellar evolution models to the ages to infer the corresponding masses for their supernova progenitor stars. We analyze 33 M33 SNR progenitors and 29 M31 SNR progenitors in this work. We then combine these measurements with 53 previously published M31 SNR progenitor measurements to bring our total number of progenitor mass estimates to 115. To quantify the mass distributions, we fit power laws of the form $dN/dM propto M^{-alpha}$. Our new, larger sample of M31 progenitors follows a distribution with $alpha = 4.4pm 0.4$, and the M33 sample follows a distribution with $alpha = 3.8^{+0.4}_{-0.5}$. Thus both samples are consistent within the uncertainties, and the full sample across both galaxies gives $alpha = 4.2pm 0.3$. Both the individual and full distributions display a paucity of massive stars when compared to a Salpeter initial mass function (IMF), which we would expect to observe if all massive stars exploded as SN that leave behind observable SNR. If we instead fix $alpha = 2.35$ and treat the maximum mass as a free parameter, we find $M_{max} sim 35-45M_{sun}$, indicative of a potential maximum cutoff mass for SN production. Our results suggest that either SNR surveys are biased against finding objects in the youngest (<10 Myr old) regions, or the highest mass stars do not produce SNe.
We present HST/ACS $g$ and $z$ photometry and half-light radii $R_{rm h}$ measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam $g$, $r$, and $i$ photometry of 421 additional can didates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a blue tilt in the blue GCs, wherein the blue GCs get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and blue subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ~10% larger $R_{rm h}$ than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for M104, suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the $R_{rm h}$ measurements is large. We also identify 31 clusters more extended than typical GCs, which we consider ultra-compact dwarf (UCD) candidates. Many of these objects are fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed. To explore low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray - GC matches, 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data compared to previous studies of GC systems.
Using HST photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main sequence masses (MZAMS) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and use CMD fitting to measure the recent star formation history (SFH) of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star and assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the MZAMS from this age. Because our technique is not contingent on precise location of the progenitor star, it can be applied to the location of any known SNR. We identify significant young SF around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of 2 increase over currently measured progenitor masses. We consider the remaining 6 SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. The distribution of recovered progenitor masses is bottom heavy, showing a paucity of the most massive stars. If we assume a single power law distribution, dN/dM proportional to M^alpha, we find a distribution that is steeper than a Salpeter IMF (alpha=-2.35). In particular, we find values of alpha outside the range -2.7 to -4.4 inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, we find that values of M_max greater than 26 Msun are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a minimum mass for core collapse between 7.0 and 7.8 Msun.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا