ترغب بنشر مسار تعليمي؟ اضغط هنا

The self-gravitating gas in the Newtonian limit is studied in the presence of dark energy with a linear and constant equation of state. Entropy extremization associates to the isothermal Boltzmann distribution an effective density that includes `dark energy particles, which either strengthen or weaken mutual gravitational attraction, in case of quintessence or phantom dark energy, respectively, that satisfy a linear equation of state. Stability is studied for microcanonical (fixed energy) and canonical (fixed temperature) ensembles. Compared to the previously studied cosmological constant case, in the present work it is found that quintessence increases, while phantom dark energy decreases the instability domain under gravitational collapse. Thus, structures are more easily formed in a quintessence rather than in a phantom dominated Universe. Assuming that galaxy clusters are spherical, nearly isothermal and in hydrostatic equilibrium we find that dark energy with a linear and constant equation of state, for fixed radius, mass and temperature, steepens their total density profile. In case of a cosmological constant, this effect accounts for a 1.5% increase in the density contrast, that is the center to edge density ratio of the cluster. We also propose a method to constrain phantom dark energy.
We present here how the gravothermal or Antonovs instability, which was originally formulated in the microcanonical ensemble, is modified in the presence of a cosmological constant and in the canonical ensemble. In contrast to the microcanonical ense mble, there is a minimum, and not maximum, radius for which metastable states exist. In addition this critical radius is decreasing, and not increasing, with increasing cosmological constant. The minimum temperature for which metastable states exist is decreasing with increasing cosmological constant, while above some positive value of the cosmological constant, there appears a second critical temperature. For lower temperatures than the second critical temperature value, metastable states reappear, indicating a typical reentrant phase transition. The two critical temperatures merge when the cosmological density equals one half the mean density of the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا