ترغب بنشر مسار تعليمي؟ اضغط هنا

214 - Z. Wang 2015
The magnetar 4U~0142+61 has been well studied at optical and infrared wavelengths and is known to have a complicated broad-band spectrum over the wavelength range. Here we report the result from our linear imaging polarimetry of the magnetar at optic al $I$-band. From the polarimetric observation carried out with the 8.2-m Subaru telescope, we determine the degree of linear polarization $P=1.0pm$3.4%, or $Pleq$5.6% (90% confidence level). Considering models suggested for optical emission from magnetars, we discuss the implications of our result. The upper limit measurement indicates that different from radio pulsars, magnetars probably would not have strongly polarized optical emission if the emission arises from their magnetosphere as suggested.
Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO $_3$(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO$_3$/SrTiO$_3$ interface, our angle-resolved photoemission data show replica bands separated by 100,meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies strong long-range coupling to a single longitudinal optical phonon mode. In the overdoped regime the preferential coupling to this mode decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow for a unified understanding of the transport properties in SrTiO$_3$-based 2DELs.
The layered transition metal dichalcogenides host a rich collection of charge density wave (CDW) phases in which both the conduction electrons and the atomic structure display translational symmetry breaking. Manipulating these complex states by pure ly electronic methods has been a long-sought scientific and technological goal. Here, we show how this can be achieved in 1T-TaS2 in the two-dimensional (2D) limit. We first demonstrate that the intrinsic properties of atomically-thin flakes are preserved by encapsulation with hexagonal boron nitride in inert atmosphere. We use this facile assembly method together with TEM and transport measurements to probe the nature of the 2D state and show that its conductance is dominated by discommensurations. The discommensuration structure can be precisely tuned in few-layer samples by an in-plane electric current, allowing continuous electrical control over the discommensuration-melting transition in 2D.
57 - X. F. Lu , N. Z. Wang , H. Wu 2014
FeSe-derived superconductors show some unique behaviors relative to iron-pnictide superconductors, which are very helpful to understand the mechanism of superconductivity in high-Tc iron-based superconductors. The low-energy electronic structure of t he heavily electron-doped AxFe2Se2 (A=K, Rb, Cs) demonstrates that interband scattering or Fermi surface nesting is not a necessary ingredient for the unconventional superconductivity in iron-based superconductors. The superconducting transition temperature (Tc) in the one-unit-cell FeSe on SrTiO3 substrate can reach as high as ~65 K, largely transcending the bulk Tc of all known iron-based superconductors. However, in the case of AxFe2Se2, the inter-grown antiferromagnetic insulating phase makes it difficult to study the underlying physics. Superconductors of alkali metal ions and NH3 molecules or organic-molecules intercalated FeSe and single layer or thin film FeSe on SrTiO3 substrate are extremely air-sensitive, which prevents the further investigation of their physical properties. Therefore, it is urgent to find a stable and accessible FeSe-derived superconductor for physical property measurements so as to study the underlying mechanism of superconductivity. Here, we report the air-stable superconductor (Li0.8Fe0.2)OHFeSe with high temperature superconductivity at ~40 K synthesized by a novel hydrothermal method. The crystal structure is unambiguously determined by the combination of X-ray and neutron powder diffraction and nuclear magnetic resonance. It is also found that an antiferromagnetic order coexists with superconductivity in such new FeSe-derived superconductor. This novel synthetic route opens a new avenue for exploring other superconductors in the related systems. The combination of different structure characterization techniques helps to complementarily determine and understand the details of the complicated structures.
140 - Z. Wang 2014
We report on our searches for debris disks around seven relatively nearby radio pulsars, which are isolated sources and were carefully selected as the targets on the basis of our deep $K_s$-band imaging survey. The $K_s$ images obtained with the 6.5, m Baade Magellan Telescope at Las Campanas Observatory are analyzed together with the textit{Spitzer}/IRAC images at 4.5 and 8.0~$mu$m and the textit{WISE} images at 3.4, 4.6, 12 and 22~$mu$m. No infrared (IR) counterparts of these pulsars are found, with flux upper limits of $sim mu$Jy at near-infrared ($lambda<10 mu$m) and $sim$10--1000,$mu$Jy at mid-infrared wavelengths ($lambda>10 mu$m). The results of this search are discussed in terms of the efficiency of converting the pulsar spin-down energy to thermal energy and X-ray heating of debris disks, with comparison made to the two magnetars 4U~0142+61 and 1E~2259+586 which are suggested to harbor a debris disk.
We find evidence for the semileptonic baryonic decay $B^-to pbar pell^-bar u_ell$ ($ell=e,mu$), based on a data sample of 772 million $Bbar B$ pairs collected at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy electr on-positron collider. A neural-network based hadronic $B$-meson tagging method is used in this study. The branching fraction of $B^-to pbar pell^-bar u_ell$ is measured to be $(5.8^{+2.4}_{-2.1}textrm{(stat.)}pm 0.9textrm{(syst.)})times 10^{-6}$ with a significance of 3.2$sigma$, where lepton universality is assumed. We also estimate the corresponding upper limit: $mathcal{B}(B^-to pbar pell^-bar u_ell) < 9.6times 10^{-6}$ at the 90% confidence level. This measurement helps constrain the baryonic transition form factor in B decays.
112 - Z. H. Wu , D. L. Sun , S. Z. Wang 2012
We demonstrated a 967 nm diode end-pumped Er:GSGG laser operated at 2.794 Micrometer with spectrum width 3.6 nm in the continuous wave(CW) mode. The maximum output power of 440 mW is obtained at an incident pumping power of 3.4 W, which corresponds t o an optical-to-optical efficiency of 13% and slope efficiency of 13.2%. The results suggest that short cavity and efficient cooling setup for crystal are advantageous to improve laser performance.
114 - Y. Kim , X. Chen , Z. Wang 2011
Inelastic light scattering spectra of Bi_2Se_3 and Sb_2Te_3 single crystals have been measured over the temperature range from 5 K to 300 K. The temperature dependence of dominant A^{2}_{1g} phonons shows similar behavior in both materials. The tempe rature dependence of the peak position and linewidth is analyzed considering the anharmonic decay of optical phonons and the material thermal expansion. This work suggests that Raman spectroscopy can be used for thermometry in Bi_2Se_3- and Sb_2Te_3-based devices in a wide temperature range.
56 - Ch. Kant , M. Schmidt , Z. Wang 2011
We report a linear dependence of the phonon splitting Deltaomega on the non-dominant exchange coupling constant J_{nd} in the antiferromagnetic transition-metal monoxides MnO, FeO, CoO, NiO, and in the frustrated antiferromagnetic oxide spinels CdCr2 O4, MgCr2O4, and ZnCr2O4. It directly confirms the theoretical prediction of an exchange induced splitting of the zone-centre optical phonon for the monoxides and explains the magnitude and the change of sign of the phonon splitting on changing the sign of the non-dominant exchange also in the frustrated oxide spinels. The experimentally found linear relation hbarDeltaomega = beta J_{nd} S^2 with slope beta = 3.7 describes the splitting for both systems and agrees with the observations in the antiferromagnets KCoF3 and KNiF3 with perovskite structure and negligible next-nearest neighbour coupling. The common behavior found for very different classes of cubic antiferromagnets suggests a universal dependence of the exchange-induced phonon splitting at the antiferromagnetic transition on the non-dominant exchange coupling.
80 - Y. X. Yao , C. Z. Wang , 2011
We introduce a scheme to include many-body screening processes explicitly into a set of self-consistent equations for electronic structure calculations using the Gutzwiller approximation. The method is illustrated by the application to a tight-bindin g model describing the strongly correlated {gamma}-Ce system. With the inclusion of the 5d-electrons into the local Gutzwiller projection subspace, the correct input Coulomb repulsion U_{ff} between the 4f-electrons for {gamma}-Ce in the calculations can be pushed far beyond the usual screened value U_{ff}^{scr} and close to the bare atomic value U_{ff}^{bare}. This indicates that the d-f many-body screening is the dominant contribution to the screening of U_{ff} in this system. The method provides a promising way towards the ab initio Gutzwiller density functional theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا