ترغب بنشر مسار تعليمي؟ اضغط هنا

81 - Z. Prudil , M. Hanke , B. Lemasle 2021
We present a chemo-dynamical study of the Orphan stellar stream using a catalog of RR~Lyrae pulsating variable stars for which photometric, astrometric, and spectroscopic data are available. Employing low-resolution spectra from the Sloan Digital Sky Survey (SDSS), we determined line-of-sight velocities for individual exposures and derived the systemic velocities of the RR~Lyrae stars. In combination with the stars spectroscopic metallicities and textit{Gaia} EDR3 astrometry, we investigated the northern part of the Orphan stream. In our probabilistic approach, we found 20 single mode RR~Lyrae variables likely associated with the Orphan stream based on their positions, proper motions, and distances. The acquired sample permitted us to expand our search to nonvariable stars in the SDSS dataset, utilizing line-of-sight velocities determined by the SDSS. We found 54 additional nonvariable stars linked to the Orphan stream. The metallicity distribution for the identified red giant branch stars and blue horizontal branch stars is, on average, $-2.13pm0.05$ dex and $-1.87pm0.14$ dex, with dispersions of 0.23 and 0.43dex, respectively. The metallicity distribution of the RR~Lyrae variables peaks at $-1.80pm0.06$ dex and a dispersion of 0.25dex. Using the collected stellar sample, we investigated a possible link between the ultra-faint dwarf galaxy Grus II and the Orphan stream. Based on their kinematics, we found that both the stream RR~Lyrae and Grus II are on a prograde orbit with similar orbital properties, although the large uncertainties on the dynamical properties render an unambiguous claim of connection difficult. At the same time, the chemical analysis strongly weakens the connection between both. We argue that Grus II in combination with the Orphan stream would have to exhibit a strong inverse metallicity gradient, which to date has not been detected in any Local Group system.
179 - A. Savino , A. Koch , Z. Prudil 2020
The central kiloparsecs of the Milky Way are known to host an old, spheroidal stellar population, whose spatial and kinematical properties set it apart from the boxy/peanut structure that constitutes most of the central stellar mass. The nature of th is spheroidal population, whether a small classical bulge, the innermost stellar halo or a population of disk stars with large initial velocity dispersion, remains unclear. This structure is also a promising candidate to host some of the oldest stars in the Galaxy. Here we address the topic of the inner stellar spheroid age, using spectroscopic and photometric metallicities for a sample of 935 RR Lyrae stars that are constituents of this component. By means of stellar population synthesis, we derive an age-metallicity relation for RR Lyrae populations. We infer, for the RR Lyrae stars in the bulge spheroid, an extremely ancient age of $13.41 pm 0.54$ Gyr and conclude they were among the first stars to form in what is now the Milky Way galaxy. Our age estimate for the central spheroid shows remarkable agreement with the age profile that has been inferred for the Milky Way stellar halo, suggesting a connection between the two structures. However, we find mild evidence for a transition in the halo properties at $r_{rm GC} sim 5$~kpc. We also investigate formation scenarios for metal-rich RR Lyrae stars, such as binarity and helium variations, and whether they can provide alternative explanations for the properties of our sample. We conclude that, within our framework, the only viable alternative is to have younger, slightly helium-rich, RR Lyrae stars, a hypothesis that would open intriguing questions for the formation of the inner stellar spheroid.
61 - Z. Prudil , I. Dekany , R. Smolec 2020
We present the most extended and homogeneous study carried out so far of the main and early shocks in 1485 RR~Lyrae stars in the Galactic bulge observed by the Optical Gravitational Lensing Experiment (OGLE). We selected non-modulated fundamental-mod e RR~Lyrae stars with good-quality photometry. Using a self-developed method, we determined the centers and strengths of main and early shock features in the phased light curves. We found that the position of both humps and bumps are highly correlated with the pulsation properties of the studied variables. Pulsators with a pronounced main shock are concentrated in the low-amplitude regime of the period-amplitude diagram, while stars with a strong early shock have average and above-average pulsation amplitudes. A connection between the main and early shocks and the Fourier coefficients is also observed. In the color-magnitude diagram (CMD), we see a separation between stars with strong and weak shocks. Variables with a pronounced main shock cluster close to the fundamental red edge of the instability strip (IS), while stars with a strong early shock tend to clump in the center and near the fundamental blue edge of the IS. The appearance of shocks and their properties seem independent of the direction of evolution estimated from the period change rate of the studied stars. In addition, the differences in the period change rate between the two main Oosterhoff groups found in the Galactic bulge suggest that stars of Oosterhoff type I are located close to the zero-age horizontal branch while Oosterhoff type II variables are on their way toward the fundamental red edge of the instability strip, thus having already left the zero-age horizontal branch.
We present a kinematical study of 314 RR~Lyrae stars in the solar neighbourhood using the publicly available photometric, spectroscopic, and {it Gaia} DR2 astrometric data to explore their distribution in the Milky Way. We report an overdensity of 22 RR~Lyrae stars in the solar neighbourhood at a pericenter distance of between 5--9,kpc from the Galactic center. Their orbital parameters and their chemistry indicate that these 22 variables share the kinematics and the [Fe/H] values of the Galactic disc, with an average metallicity and tangential velocity of [Fe/H]=$-0.60$,dex and $v_{theta} = 241$,km,s$^{-1}$, respectively. From the distribution of the Galactocentric spherical velocity components, we find that these 22 disc-like RR~Lyrae variables are not consistent with the {it Gaia} Sausage ({it Gaia}-Enceladus), unlike almost half of the local RR~Lyrae stars. Chemical information from the literature shows that the majority of the selected pericenter peak RR~Lyrae variables are $alpha$-poor, a property shared by typically much younger stars in the thin disc. Using the available photometry we rule out a possible misclassification with the known classical and anomalous Cepheids. The similar kinematic, chemical, and pulsation properties of these disc RR~Lyrae stars suggest they share a common origin. In contrast, we find the RR~Lyrae stars associated with the {it Gaia}-Enceladus based on their kinematics and chemical composition show a considerable metallicity spread in the old population ($sim$~1,dex).
The number of stars observed by the Optical Gravitational Lensing Experiment (OGLE) project in the Galactic bulge offers an invaluable chance to study RR Lyrae stars in a statistical manner. We used data of 3141 fundamental-mode RR Lyrae stars showin g the Blazhko effect observed in OGLE-IV to investigate a possible connection between modulation amplitudes and periods, light curve and pulsation characteristics. We found that there is no simple monotonic correlation between any combination of two parameters concerning the Blazhko and pulsation amplitudes, periods and the shape of the light curves. There are only systematic limits. There is a bottom limit of the modulation period with respect to the pulsation period. We also found that the possible range of modulation amplitudes decreases with increasing pulsation period which could point towards that the Blazhko effect is suppressed in cooler, larger, more luminous and less metal abundant bulge RR Lyrae stars. Our investigation revealed that the distribution of the modulation periods can be described with two populations of stars with the mean modulation periods of 48 and 186 days. There is a certain region with a low density of the modulated stars, which we call the Blazhko valley, in the pulsation period-modulation period plane. Based on the similarity of the modulation envelopes, basically every star can be assigned to one of six morphological classes. Double modulation was found in 25 per cent of the studied stars. Only 6.3 per cent of modulated stars belongs to the Oosterhoff group II.
109 - M. Skarka , Z. Prudil 2018
We present our results of searching for differences in light curves of modulated and non-modulated RRab stars in the Galactic bulge. We examined a sample of more than 8000 stars. The most important results are that Blazhko stars have shorter pulsatio n periods, less skewed mean light curves, lower mean amplitudes, larger rise-time, no difference in spatial distribution and metallicity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا