ترغب بنشر مسار تعليمي؟ اضغط هنا

91 - O. Debarre , Z. Jiang , C. Voisin 2013
Given a morphism between complex projective varieties, we make several conjectures on the relations between the set of pseudo-effective (co)homology classes which are annihilated by pushforward and the set of classes of varieties contracted by the mo rphism. We prove these conjectures for classes of curves or divisors. We also prove that one of these conjectures implies Grothendiecks generalized Hodge conjecture for varieties with Hodge coniveau at least 1.
The relationship between deexcitation energies of superdeformed secondary minima relative to ground states and the density dependence of the symmetry energy is investigated for heavy nuclei using the relativistic mean field (RMF) model. It is shown t hat the deexcitation energies of superdeformed secondary minima are sensitive to differences in the symmetry energy that are mimicked by the isoscalar-isovector coupling included in the model. With deliberate investigations on a few Hg isotopes that have data of deexcitation energies, we find that the description for the deexcitation energies can be improved due to the softening of the symmetry energy. Further, we have investigated deexcitation energies of odd-odd heavy nuclei that are nearly independent of pairing correlations, and have discussed the possible extraction of the constraint on the density dependence of the symmetry energy with the measurement of deexcitation energies of these nuclei.
We report a study of the cyclotron resonance (CR) transitions to and from the unusual $n=0$ Landau level (LL) in monolayer graphene. Unexpectedly, we find the CR transition energy exhibits large (up to 10%) and non-monotonic shifts as a function of t he LL filling factor, with the energy being largest at half-filling of the $n=0$ level. The magnitude of these shifts, and their magnetic field dependence, suggests that an interaction-enhanced energy gap opens in the $n=0$ level at high magnetic fields. Such interaction effects normally have limited impact on the CR due to Kohns theorem [W. Kohn, Phys. Rev. {bf 123}, 1242 (1961)], which does not apply in graphene as a consequence of the underlying linear band structure.
The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high field regime, the eight-fold degeneracy in the zero energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding filling factors $ u=$0, 1, 2, & 3. Measurements of the activation energy gap in tilted magnetic fields suggest that the Landau level splitting at the newly formed $ u=$1, 2, & 3 filling factors are independent of spin, consistent with the formation of a quantum Hall ferromagnet. In addition, measurements taken at the $ u$ = 0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.
We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B = 18 T we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies ar e roughly linear in B between the lowest Landau levels, whereas they follow sqrt{B} for the higher transitions. This highly unusual behavior represents a change from a parabolic to a linear energy dispersion. The density of states derived from our data generally agrees with the existing lowest order tight binding calculation for bilayer graphene. However in comparing data to theory, a single set of fitting parameters fails to describe the experimental results.
We investigate the quantum Hall (QH) states near the charge neutral Dirac point of a high mobility graphene sample in high magnetic fields. We find that the QH states at filling factors $ u=pm1$ depend only on the perpendicular component of the field with respect to the graphene plane, indicating them to be not spin-related. A non-linear magnetic field dependence of the activation energy gap at filling factor $ u=1$ suggests a many-body origin. We therefore propose that the $ u=0$ and $pm1$ states arise from the lifting of the spin and sub-lattice degeneracy of the $n=0$ LL, respectively.
Andreev interferometers, normal metal wires coupled to superconducting loops, display phase coherent changes as the magnetic flux through the superconducting loops is altered. Properties such as the electronic and thermal conductance of these devices have been shown to oscillate symmetrically about zero with a period equal to one superconducting flux quantum, $Phi_o = h/2e$. However, the thermopower of these devices can oscillate symmetrically or antisymmetrically depending on the geometry of the sample, a phenomenon not well understood theoretically. Here we report on thermopower measurements of a double-loop Andreev interferometer where two Josephson currents in the normal metal wire may be controlled independently. The amplitude and symmetries of the observed thermopower oscillations may help to illuminate the unexplained dependence of oscillation symmetry on sample geometry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا