ترغب بنشر مسار تعليمي؟ اضغط هنا

291 - Z. B. Li , Y. M. Liu , D. X. Yao 2016
Under the Thomas-Fermi approximation, a relatively much simpler analytical solutions of the coupled Gross-Pitaevskii equations for the two-species BEC have been derived. Additionally, a model for the asymmetric states has been proposed, and the compe tition between the symmetric and asymmetric states has been evaluated. The whole parameter-space is divided into zones, each supports a specific phase, namely, the symmetric miscible phase, the symmetric immiscible phase, or the asymmetric phase. Based on the division the phase-diagrams against any set of parameters can be plotted. Thereby, the effects of these parameters can be visualized. There are three critical values in the inter-species interaction $% V_{AB} $ and one in the ratio of particle numbers $N_{A}/N_{B}$. They govern the transitions between the phases. Two cases, (i) the repulsive $V_{AB}$ matches the repulsive $% V_{A}+V_{B}$, and (ii) the attractive $V_{AB}$ nearly cancels the effect of the repulsive $V_{A}+V_{B}$ have been particularly taken into account. The former leads to a complete separation of the two kinds of atoms , while the latter lead to a collapse. Finally, based on an equation derived in the paper, a convenient experimental approach is proposed to determine the ratio of particle numbers .
59 - Y. Z. He , Z. F. Chen , Z. B. Li 2009
In order to evaluate $g_0$, the interaction strength of a pair of $^{52}$Cr atoms with total spin S=0, a specially designed s-wave scattering of the pair has been studied theoretically. Both the incident atom and the target atom trapped by a harmonic potential are polarized previously but in reverse directions. Due to spin-flip, the outgoing atom may have spin component $mu$ ranging from -3 to 3. The outgoing channels are classified by $mu$. The effect of $g_{0}$ on the scattering amplitudes of each of these $mu-$channels has been predicted.
82 - Ran Qi , Xiao-Lu Yu , Z. B. Li 2008
We investigate the non-Abelian Josephson effect in spinor Bose-Einstein condensates with double optical traps. We propose, for the first time, a real physical system which contains non-Abelian Josephson effects. The collective modes of this weak coup ling system have very different density and spin tunneling characters comparing to the Abelian case. We calculate the frequencies of the pseudo Goldstone modes in different phases between two traps respectively, which are a crucial feature of the non-Abelian Josephson effects. We also give an experimental protocol to observe this novel effect in future experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا