ترغب بنشر مسار تعليمي؟ اضغط هنا

We construct models hosting classical fractal spin liquids on two realistic three-dimensional (3D) lattices of corner-sharing triangles: trillium and hyperhyperkagome (HHK). Both models involve the same form of three-spin Ising interactions on triang ular plaquettes as the Newman-Moore (NM) model on the 2D triangular lattice. However, in contrast to the NM model and its 3D generalizations, their degenerate ground states and low-lying excitations cannot be described in terms of scalar cellular automata (CA), because the corresponding fractal structures lack a simplifying algebraic property, often termed the Freshmans dream. By identifying a link to matrix CAs -- that makes essential use of the crystallographic structure -- we show that both models exhibit fractal symmetries of a distinct class to the NM-type models. We devise a procedure to explicitly construct low-energy excitations consisting of finite sets of immobile defects or fractons, by flipping arbitrarily large self-similar subsets of spins, whose fractal dimensions we compute analytically. We show that these excitations are associated with energetic barriers which increase logarithmically with system size, leading to fragile glassy dynamics, whose existence we confirm via classical Monte Carlo simulations. We also discuss consequences for spontaneous fractal symmetry breaking when quantum fluctuations are introduced by a transverse magnetic field, and propose multi-spin correlation function diagnostics for such transitions. Our findings suggest that matrix CAs may provide a fruitful route to identifying fractal symmetries and fracton-like behaviour in lattice models, with possible implications for the study of fracton topological order.
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to ex tend the LL phenomenology to two dimensions (2D), especially in models of closely packed perfect arrays of 1D quantum wires, each being described as a LL. For instance, such coupled-wire models have been successfully used to construct 2D anisotropic non-Fermi liquids, various quantum Hall states, topological phases, and quantum spin liquids. Despite these exciting theoretical developments, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moire superlattice made of twisted bilayer tungsten ditelluride (tWTe$_{2}$). Originating from the anisotropic lattice of the monolayer, the moire pattern of tWTe$_{2}$ hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tunable by the twist angle between layers. At a twist angle of ~ 5 degrees, we find that hole-doped tWTe$_{2}$ exhibits exceptionally large transport anisotropy with a resistance ratio of ~ 1000 between two orthogonal in-plane directions, suggesting the formation of 1D channels. The conductance measurement reveals a power-law scaling behavior, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of 2D correlated and topological quantum phases based on coupled-wire models and LL physics.
We study magic angle graphene in the presence of both strain and particle-hole symmetry breaking due to non-local inter-layer tunneling. We perform a self-consistent Hartree-Fock study that incorporates these effects alongside realistic interaction a nd substrate potentials, and explore a comprehensive set of competing orders including those that break translational symmetry at arbitrary wavevectors. We find that at all non-zero integer fillings very small strains, comparable to those measured in scanning tunneling experiments, stabilize a fundamentally new type of time-reversal symmetric and spatially non-uniform order. This order, which we dub the incommensurate Kekule spiral (IKS) order, spontaneously breaks both the emergent valley-charge conservation and moire translation symmetries, but preserves a modified translation symmetry $hat{T}$ -- which simultaneously shifts the spatial coordinates and rotates the $U(1)$ angle which characterizes the spontaneous inter-valley coherence. We discuss the phenomenological and microscopic properties of this order. We argue that our findings are consistent with all experimental observations reported so far, suggesting a unified explanation of the global phase diagram in terms of the IKS order.
We identify an unusual mechanism for quantum oscillations in nodal semimetals, driven by a single pair of Landau levels periodically closing their gap at the Fermi energy as a magnetic field is varied. These `zero Landau level quantum oscillations (Z QOs) appear in the nodal limit where the zero-field Fermi volume vanishes, and have distinctive periodicity and temperature dependence. We link the Landau spectrum of a two-dimensional (2D) nodal semimetal to the Rabi model, and show by exact solution that across the entire Landau fan, pairs of opposite-parity Landau levels are intertwined in a `serpentine manner. We propose 2D surfaces of topological crystalline insulators as natural settings for ZQOs, and comment on implications for anomaly physics in 3D nodal semimetals.
We develop a theory of the excitonic phase recently proposed as the zero-field insulating state observed near charge neutrality in monolayer WTe$_2$. Using a Hartree-Fock approximation, we numerically identify two distinct gapped excitonic phases: a spin density wave state for weak but non-zero interaction strength $U_0$, and spin spiral order at larger $U_0$, separated by a narrow window of trivial insulator. We introduce a simplified model capturing essential features of the WTe$_2$ band structure, in which the two phases may be viewed as distinct valley ferromagnetic orders. We link the competition between the two phases to the orbital structure of the electronic wavefunctions at the Fermi surface and hence its proximity to the underlying gapped Dirac point in WTe$_2$. We briefly discuss collective modes of the two excitonic states, and comment on implications for experiments.
We consider magic-angle twisted bilayer graphene (TBG) at filling $ u=+3$, where experiments have observed a robust quantized anomalous Hall effect. This has been attributed to the formation of a valley- and spin-polarized Chern insulating ground sta te that spontaneously breaks time-reversal symmetry, and is stabilized by a hexagonal boron nitride (hBN) substrate. We identify three different types of domain wall, and study their properties and energetic selection mechanisms via theoretical arguments and Hartree-Fock calculations adapted to deal with inhomogeneous moire systems. We comment on the implications of these results for transport and scanning probe experiments.
We uncover topological features of neutral particle-hole pair excitations of correlated quantum anomalous Hall (QAH) insulators whose approximately flat conduction and valence bands have equal and opposite non-zero Chern number. Using an exactly solv able model we show that the underlying band topology affects both the center-of-mass and relative motion of particle-hole bound states. This leads to the formation of topological exciton bands whose features are robust to nonuniformity of both the dispersion and the Berry curvature. We apply these ideas to recently-reported broken-symmetry spontaneous QAH insulators in substrate aligned magic-angle twisted bilayer graphene.
We consider fractional quantum Hall states in systems where two flat Chern number $C=pm 1$ bands are labeled by an approximately conserved valley index and interchanged by time reversal symmetry. At filling factor $ u=1$ this setting admits an unusua l hierarchy of correlated phases of excitons, neutral particle-hole pair excitations of a fully valley-polarized `orbital ferromagnet parent state where all electrons occupy a single valley. Excitons experience an effective magnetic field due to the Chern numbers of the underlying bands. This obstructs their condensation in favor of a variety of crystalline orders and gapped and gapless liquid states. All these have the same quantized charge Hall response and are electrically incompressible, but differ in their edge structure, orbital magnetization, and hence valley and thermal responses. We explore the relevance of this scenario for Moire heterostructures of bilayer graphene on a hexagonal boron nitride substrate.
We study the effect of an in-plane magnetic field on the non-interacting dispersion of twisted bilayer graphene. Our analysis is rooted in the chirally symmetric continuum model, whose zero-field band structure hosts exactly flat bands and large ener gy gaps at the magic angles. At the first magic angle, the central bands respond to a parallel field by forming a quadratic band crossing point (QBCP) at the Moire Brillouin zone center. Over a large range of fields, the dispersion is invariant with an overall scale set by the magnetic field strength. For deviations from the magic angle and for realistic interlayer couplings, the motion and merging of the Dirac points lying near charge neutrality are discussed in the context of the symmetries, and we show that small magnetic fields are able to induce a qualitative change in the energy spectrum. We conclude with a discussion on the possible ramifications of our study to the interacting ground states of twisted bilayer graphene systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا