ترغب بنشر مسار تعليمي؟ اضغط هنا

We study how coarse-graining procedure of an underlying UV-complete quantum gravity gives rise to a connected geometry. It has been shown, quantum entanglement plays a key role in the emergence of such a geometric structure, namely a smooth Einstein- Rosen bridge. In this paper, we explore the possibility of the emergence of similar geometric structure from classical correlation, in the AdS/CFT setup. To this end, we consider a setup where we have two decoupled CFT Hilbert spaces, then choose a random typical state in one of the Hilbert spaces and the same state in the other. The total state in the fine-grained picture is of course a tensor product state, but averaging over the states sharing the same random coefficients creates a geometric connection for simple probes. Then, the apparent spatial wormhole causes a factorization puzzle. We argue that there is a spatial analog of half-wormholes, which resolves the puzzle in the similar way as the spacetime half-wormholes.
We present a new method of deriving shapes of entanglement wedges directly from CFT calculations. We point out that a reduced density matrix in holographic CFTs possesses a sharp wedge structure such that inside the wedge we can distinguish two local excitations, while outside we cannot. We can determine this wedge, which we call a CFT wedge, by computing a distinguishability measure. We find that CFT wedges defined by the fidelity or Bures distance as a distinguishability measure, coincide perfectly with shadows of entanglement wedges in AdS/CFT. We confirm this agreement between CFT wedges and entanglement wedges for two dimensional holographic CFTs where the subsystem is chosen to be an interval or double intervals, as well as higher dimensional CFTs with a round ball subsystem. On the other hand if we consider a free scalar CFT, we find that there are no sharp CFT wedges. This shows that sharp entanglement wedges emerge only for holographic CFTs owing to the large N factorization. We also generalize our analysis to a time-dependent example and to a holographic boundary conformal field theory (AdS/BCFT). Finally we study other distinguishability measures to define CFT wedges. We observe that some of measures lead to CFT wedges which slightly deviate from the entanglement wedges in AdS/CFT and we give a heuristic explanation for this. This paper is an extended version of our earlier letter arXiv:1908.09939 and includes various new observations and examples.
We derive dynamics of the entanglement wedge cross section from the reflected entropy for local operator quench states in the holographic CFT. By comparing between the reflected entropy and the mutual information in this dynamical setup, we argue tha t (1) the reflected entropy can diagnose a new perspective of the chaotic nature for given mixed states and (2) it can also characterize classical correlations in the subregion/subregion duality. Moreover, we point out that we must improve the bulk interpretation of a heavy state even in the case of well-studied entanglement entropy. Finally, we show that we can derive the same results from the odd entanglement entropy. The present paper is an extended version of our earlier report arXiv:1907.06646 and includes many new results: non-perturbative quantum correction to the reflected/odd entropy, detailed analysis in both CFT and bulk sides, many technical aspects of replica trick for reflected entropy which turn out to be important for general setup, and explicit forms of multi-point semi-classical conformal blocks under consideration.
We study entanglement entropy after a double local quench in two-dimensional conformal field theories (CFTs), with any central charge $c>1$. In the holographic CFT, such a state with double-excitation is dual to an AdS space with two massive particle s introduced from the boundary. We show that the growth after the double local excitations cannot be given by the sum of two local quenches but with an additional negative term. This negative contribution can be naturally interpreted as due to the attractive force of gravity. In CFT side, this evaluation of the entanglement entropy is accomplished by a special limit of 6-point functions, where we employed the fusion matrix approach for multi-point conformal blocks developed in arXiv:1905.02191.
We derive dynamics of the entanglement wedge cross section directly from the two-dimensional holographic CFTs with a local operator quench. This derivation is based on the reflected entropy, a correlation measure for mixed states. We further compare these results with the mutual information and ones for RCFTs. Our results directly suggest the classical correlation also plays an important role in the subregion/subregion duality even for dynamical setup. Besides a local operator quench, we study the reflected entropy in a heavy state and provide improved bulk interpretation. We checked the above results also hold for the odd entanglement entropy, which is another measure for mixed states related to the entanglement wedge cross section.
We explore the structures of light cone and Regge limit singularities of $n$-point Virasoro conformal blocks in $c>1$ two-dimensional conformal field theories with no chiral primaries, using fusion matrix approach. These CFTs include not only hologra phic CFTs dual to classical gravity, but also their full quantum corrections, since this approach allows us to explore full $1/c$ corrections. As the important applications, we study time dependence of Renyi entropy after a local quench and out-of-time ordered correlator (OTOC) at late time. We first show that, the $n$-th ($n>2$) Renyi entropy after a local quench in our CFT grows logarithmically at late time, for any $c$ and any conformal dimensions of excited primary. In particular, we find that this behavior is independent of $c$, contrary to the expectation that the finite $c$ correction fixes the late time Renyi entropy to be constant. We also show that the constant part of the late time Renyi entropy is given by a monodromy matrix. We also investigate OTOCs by using the monodromy matrix. We first rewrite the monodromy matrix in terms of fusion matrix explicitly. By this expression, we find that the OTOC decays exponentially in time, and the decay rates are divided into three patterns, depending on the dimensions of external operators. We note that our result is valid for any $c>1$ and any external operator dimensions. Our monodromy matrix approach can be generalized to the Liouville theory and we show that the Liouville OTOC approaches constant in the late time regime. We emphasize that, there is a number of other applications of the fusion and the monodromy matrix approaches, such as solving the conformal bootstrap equation. Therefore, it is tempting to believe that the fusion and monodromy matrix approaches provide a key to understanding the AdS/CFT correspondence.
114 - Yuya Kusuki 2018
The light cone OPE limit provides a significant amount of information regarding the conformal field theory (CFT), like the high-low temperature limit of the partition function. We started with the light cone bootstrap in the {it general} CFT ${}_2$ w ith $c>1$. For this purpose, we needed an explicit asymptotic form of the Virasoro conformal blocks in the limit $z to 1$, which was unknown until now. In this study, we computed it in general by studying the pole structure of the {it fusion matrix} (or the crossing kernel). Applying this result to the light cone bootstrap, we obtained the universal total twist (or equivalently, the universal binding energy) of two particles at a large angular momentum. In particular, we found that the total twist is saturated by the value $frac{c-1}{12}$ if the total Liouville momentum exceeds beyond the {it BTZ threshold}. This might be interpreted as a black hole formation in AdS${}_3$. As another application of our light cone singularity, we studied the dynamics of entanglement after a global quench and found a Renyi phase transition as the replica number was varied. We also investigated the dynamics of the 2nd Renyi entropy after a local quench. We also provide a universal form of the Regge limit of the Virasoro conformal blocks from the analysis of the light cone singularity. This Regge limit is related to the general $n$-th Renyi entropy after a local quench and out of time ordered correlators.
56 - Yuya Kusuki 2018
In this paper, we study large $c$ Virasoro blocks by using the Zamolodchikov monodromy method beyond its known limits. We give an analytic proof of our recent conjectur, which implied that the asymptotics of the large $c$ conformal blocks can be expr essed in very simple forms, even if outside its known limits, namely the semiclassical limit or the heavy-light limit. In particular, we analytically discuss the fact that the asymptotic behavior of large $c$ conformal blocks drastically changes when the dimensions of external primary states reach the value $frac{c}{32}$, which is conjectured by our numerical studies. The results presented in this work imply that the general solutions to the Zamolodchikov recursion relation are given by Cardy-like formula, which is an important conclusion that can be numerically drawn from our recent works. Mathematical derivations and analytical results imply that, in the bulk, the collision behavior between two heavy particles may undergo a remarkable transition associated with their masses.
94 - Yuya Kusuki 2018
We study large $c$ conformal blocks outside the known limits. This work seems to be hard, but it is possible numerically by using the Zamolodchikov recursion relation. As a result, we find new some properties of large $c$ conformal blocks with a pair of two different dimensions for any channel and with various internal dimensions. With light intermediate states, we find a Cardy-like asymptotic formula for large $c$ conformal blocks and also we find that the qualitative behavior of various large $c$ blocks drastically changes when the dimensions of external primary states reach the value $c/32$. And we proceed to the study of blocks with heavy intermediate states $h_p$ and we find some simple dependence on heavy $h_p$ for large $c$ blocks. The results in this paper can be applied to, for example, the calculation of OTOC or Entanglement Entropy. In the end, we comment on the application to the conformal bootstrap in large $c$ CFTs.
We study the time evolution of Renyi entanglement entropy for locally excited states in two dimensional large central charge CFTs. It generically shows a logarithmical growth and we compute the coefficient of $log t$ term. Our analysis covers the ent ire parameter regions with respect to the replica number $n$ and the conformal dimension $h_O$ of the primary operator which creates the excitation. We numerically analyse relevant vacuum conformal blocks by using Zamolodchikovs recursion relation. We find that the behavior of the conformal blocks in two dimensional CFTs with a central charge $c$, drastically changes when the dimensions of external primary states reach the value $c/32$. In particular, when $h_Ogeq c/32$ and $ngeq 2$, we find a new universal formula $Delta S^{(n)}_Asimeq frac{nc}{24(n-1)}log t$. Our numerical results also confirm existing analytical results using the HHLL approximation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا