ترغب بنشر مسار تعليمي؟ اضغط هنا

We revisit the topic of triple-product asymmetries which probe CP violation through differential distributions. We construct distributions with well-defined discrete symmetry properties and characterize the asymmetries formed upon them. It is stresse d that the simplest asymmetries may not be optimal. We explore systematic generalizations having limited reliance on the process dynamics and phase-space parametrization. They exploit larger fractions of the information contained in differential distributions and may lead to increased sensitivities to CP violation. Our detailed treatment of the case of spinless four-body decays paves the way for further experimental studies.
Neutrino oscillation experiments are known to be sensitive to Non-Standard Interactions (NSIs). We extend the NSI formalism to include one-loop effects. We discuss universal effects induced by corrections to the tree level W exchange, as well as non- universal effects that can arise from scalar charged current interactions. We show how the parameters that can be extracted from the experiments are obtained from various loop amplitudes, which include vertex corrections, wave function renormalizations, mass corrections as well as box diagrams. As an illustrative example, we discuss NSIs at one loop in the Minimal Supersymmetric Standard Model (MSSM) with generic lepton flavor violating sources in the soft sector. We argue that the size of one-loop NSIs can be large enough to be probed in future neutrino oscillation experiments.
Measurements of lifetimes can be done in two ways. For very short lived particles, the width can be measured. For long lived ones, the lifetime can be directly measured, for example, using a displaced vertex. Practically, the lifetime cannot be extra cted for particles with intermediate lifetimes. We show that for such cases information about the lifetime can be extracted for heavy colored particles that can be produced with known polarization. For example, a $t$-like particle with intermediate lifetime hadronizes into a superposition of the lowest two hadronic states, $T^*$ and $T$ (the equivalent of $B^*$ and $B$). Depolarization effects are governed by time scales that are much longer than the hadronization time scale, $lqcd^{-1}$. After a time of order $1/Delta m$, with $Delta m equiv m(T^*)-m(T)$, half of the initial polarization is lost. The polarization is totally lost after a time of order $1/Gamma_{gamma}$, with $Gamma_{gamma}= Gamma(T^*to Tgamma)$. Thus, by comparing the initial and final polarization, we get information on the particles lifetime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا