ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic programming languages can simplify the development of machine learning techniques, but only if inference is sufficiently scalable. Unfortunately, Bayesian parameter estimation for highly coupled models such as regressions and state-spac e models still scales poorly; each MCMC transition takes linear time in the number of observations. This paper describes a sublinear-time algorithm for making Metropolis-Hastings (MH) updates to latent variables in probabilistic programs. The approach generalizes recently introduced approximate MH techniques: instead of subsampling data items assumed to be independent, it subsamples edges in a dynamically constructed graphical model. It thus applies to a broader class of problems and interoperates with other general-purpose inference techniques. Empirical results, including confirmation of sublinear per-transition scaling, are presented for Bayesian logistic regression, nonlinear classification via joint Dirichlet process mixtures, and parameter estimation for stochastic volatility models (with state estimation via particle MCMC). All three applications use the same implementation, and each requires under 20 lines of probabilistic code.
Can we make Bayesian posterior MCMC sampling more efficient when faced with very large datasets? We argue that computing the likelihood for N datapoints in the Metropolis-Hastings (MH) test to reach a single binary decision is computationally ineffic ient. We introduce an approximate MH rule based on a sequential hypothesis test that allows us to accept or reject samples with high confidence using only a fraction of the data required for the exact MH rule. While this method introduces an asymptotic bias, we show that this bias can be controlled and is more than offset by a decrease in variance due to our ability to draw more samples per unit of time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا