ترغب بنشر مسار تعليمي؟ اضغط هنا

item[Purpose] A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range com pensators on tumor dose in carbon-ion radiotherapy. item[Methods] Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. item[Results] The attenuation per range shift by PE was 0.1%--0.3%/cm in dose and 0.2%--0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. item[Conclusions] The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.
Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms ar e often used for convenience. These materials should ideally be equivalent to water. In this study, we evaluated dosimetric water equivalence of four common plastics, HDPE, PMMA, PET, and POM. Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, we calculated the effective densities of the plastics for these interactions. We experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per 1-cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا