ترغب بنشر مسار تعليمي؟ اضغط هنا

The concept of topological insulator (TI) has introduced a new point of view to condensed-matter physics, relating a priori unrelated subfields such as quantum (spin, anomalous) Hall effects, spin-orbit coupled materials, some classes of nodal superc onductors and superfluid $^3$He, etc. From a technological point of view, topological insulator is expected to serve as a platform for realizing dissipationless transport in a non-superconducting context. The topological insulator exhibits a gapless surface state with a characteristic conic dispersion (a surface Dirac cone). Here, we review peculiar finite-size effects applicable to such surface states in TI nanostructures. We highlight the specific electronic properties of TI nanowires and nanoparticles, and in this context contrast the cases of weak and strong TIs. We study robustness of the surface and the bulk of TIs against disorder, addressing the physics of Dirac and Weyl semimetals as a new perspective of research in the field.
We show how the two-dimensional (2D) topological insulator evolves, by stacking, into a strong or weak topological insulator with different topological indices, proposing a new conjecture that goes beyond an intuitive picture of the crossover from qu antum spin Hall to the weak topological insulator. Studying the conductance under different boundary conditions, we demonstrate the existence of two conduction regimes in which conduction happens through either surface- or edge-conduction channels. We show that the two conduction regimes are complementary and exclusive. Conductance maps in the presence and absence of disorder are introduced, together with 2D $mathbb{Z}_2$-index maps, describing the dimensional crossover of the conductance from the 2D to the 3D limit. Stacking layers is an effective way to invert the gap, an alternative to controlling the strength of spin-orbit coupling. The emerging quantum spin Hall insulator phase is not restricted to the case of odd numbers of layers.
We propose classification schemes for characterizing two-dimensional topological phases with nontrivial weak indices. Here, weak implies that the Chern number in the corresponding phase is trivial, while the system shows edge states along specific bo undaries. As concrete examples, we analyze differen
The non-trivialness of a topological insulator (TI) is characterized either by a bulk topological invariant or by the existence of a protected metallic surface state. Yet, in realistic samples of finite size this non-trivialness does not necessarily guarantee the gaplessness of the surface state. Depending on the geometry and on the topological indices, a finite-size energy gap of different nature can appear, and correspondingly, exhibits various scaling behaviors of the gap. The spin-to-surface locking provides one of such gap-opening mechanisms, resulting in a power-law scaling of the energy gap. Weak and strong TIs show different degrees of sensitivity to the geometry of the sample. As a noteworthy example, a strong TI nanowire of a rectangular prism shape is shown to be more gapped than that of a weak TI of precisely the same geometry.
The electronic spectrum on the spherical surface of a topological insulator reflects an active property of the helical surface state that stems from a constraint on its spin on a curved surface. The induced effective vector potential (spin connection ) can be interpreted as an effective vector potential associated with a fictitious magnetic monopole induced at the center of the sphere. The strength of the induced magnetic monopole is found to be g=2pi, -2pi, being the smallest finite (absolute) value compatible with the Dirac quantization condition. We have established an explicit correspondence between the bulk Hamiltonian and the effective Dirac operator on the curved spherical surface. An explicit construction of the surface spinor wave functions implies a rich spin texture possibly realized on the surface of topological insulator nanoparticles. The electronic spectrum inferred by the obtained effective surface Dirac theory, confirmed also by the bulk tight-binding calculation, suggests a specific photo absorption/emission spectrum of such nanoparticles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا