ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - Yukinao Akamatsu 2014
We derive the quantum master equations for heavy quark systems in a high-temperature quark- gluon plasma in the Lindblad form. The master equations are derived in the influence functional formalism for open quantum systems in perturbation theory. The se master equations have a wide range of applications, such as decoherence of a heavy quarkonium and Langevin dynamics of a heavy quark in the quark-gluon plasma. We also show the equivalence between the quarkonium master equations in the recoilless limit and the Schroedinger equations with stochastic potential.
128 - Yukinao Akamatsu 2012
On the basis of the closed-time path formalism of non-equilibrium quantum field theory, we derive the real-time quantum dynamics of heavy quark systems. Even though our primary goal is the description of heavy quarkonia, our method allows a unified d escription of the propagation of single heavy quarks as well as their bound states. To make calculations tractable, we deploy leading-order perturbation theory and consider the non-relativistic limit. Various dynamical equations, such as the master equation for quantum Brownian motion and time-evolution equation for heavy quark and quarkonium forward correlators, are obtained from a single operator, the renormalized effective Hamiltonian. We are thus able to reproduce previous results of perturbative calculations of the drag force and the complex potential simultaneously. In addition, we present stochastic time-evolution equations for heavy quark and quarkonium wave function, which are equivalent to the dynamical equations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا