ترغب بنشر مسار تعليمي؟ اضغط هنا

The fundamental insight into Brownian motion by Einstein is that all substances exhibit continual fluctuations due to thermal agitation balancing with the frictional resistance. However, even at thermal equilibrium, biological activity can give rise to non-equilibrium fluctuations that cause ``active diffusion in living cells. Because of the non-stationary and non-equilibrium nature of such fluctuations, mean square displacement analysis, relevant only to a steady state ensemble, may not be the most suitable choice as it depends on the choice of the ensemble; hence, a new analytical method for describing active diffusion is desired. Here we discuss the stochastic energetics of a thermally fluctuating single active diffusion trajectory driven by non-thermal random forces. Heat dissipation, usually difficult to measure, can be estimated from the active diffusion trajectory; guidelines on the analysis such as criteria for the time resolution and driving force intensity are shown by a statistical test. This leads to the concept of an ``instantaneous diffusion coefficient connected to heat dissipation that may be used to analyse the activity and molecular transport mechanisms of living systems.
The assumption of linear response of protein molecules to thermal noise or structural perturbations, such as ligand binding or detachment, is broadly used in the studies of protein dynamics. Conformational motions in proteins are traditionally analyz ed in terms of normal modes and experimental data on thermal fluctuations in such macromolecules is also usually interpreted in terms of the excitation of normal modes. We have chosen two important protein motors - myosin V and kinesin KIF1A - and performed numerical investigations of their conformational relaxation properties within the coarse-grained elastic network approximation. We have found that the linearity assumption is deficient for ligand-induced conformational motions and can even be violated for characteristic thermal fluctuations. The deficiency is particularly pronounced in KIF1A where the normal mode description fails completely in describing functional mechanochemical motions. These results indicate that important assumptions of the theory of protein dynamics may need to be reconsidered. Neither a single normal mode, nor a superposition of such modes yield an approximation of strongly nonlinear dynamics.
Spatiotemporal pattern formation in a product-activated enzymic reaction at high enzyme concentrations is investigated. Stochastic simulations show that catalytic turnover cycles of individual enzymes can become coherent and that complex wave pattern s of molecular synchronization can develop. The analysis based on the mean-field approximation indicates that the observed patterns result from the presence of Hopf and wave bifurcations in the considered system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا