ترغب بنشر مسار تعليمي؟ اضغط هنا

68 - Yuhong Zhang 2015
I present here a new ring-ring design of eRHIC, a polarized electron-ion collider based on RHIC at BNL. This alternate eRHIC design utilizes high repetition rate colliding beams and is likely able to deliver the performance to meet the requirements o f the science program with low technical risk and modest accelerator R&D. The expected performance includes high luminosities over multiple collision points and a broad CM energy range with a maximum value up to 2x10^34 cm-2s-1 per detector, and polarization higher than 70% for the colliding electron and light ion beams. This new design calls for reuse of decommissioned facilities in the US, namely, the PEP-II high energy ring and one section of the SLAC warm linac as a full energy electron injector.
113 - Yuhong Zhang 2012
A {gamma}-{gamma} collider has long been considered an option for a Higgs Factory. Such photon colliders usually rely on Compton back-scattering for generating high energy {gamma} photons and further Higgs bosons through {gamma}-{gamma} collisions. T he presently existing proposals or design concepts all have chosen a very thick laser target (i.e., high laser photon intensity) for Compton scatterings. In this paper, we present a new design concept of a {gamma}-{gamma} collider utilizing a thin laser target (i.e., relatively low photon density), thus leading to a low electron to {gamma} photon conversion rate. This new concept eliminates most useless and harmful soft {gamma} photons from multiple Compton scattering so the detector background is improved. It also greatly relaxes the requirement of the high peak power of the laser, a significant technical challenge. A high luminosity for such a {gamma}-{gamma} collider can be achieved through an increase of the bunch repetition rate and current of the driven electron beam. Further, a multi-pass recirculating linac could greatly reduce the linac cost and energy recovery is required to reduce the needed RF power.
Based on the vector angular spectrum method and the stationary phase method and the fact that a circular aperture function can be expanded into a finite sum of complex Gaussian functions, the analytical vectorial structure of a four-petal Gaussian be am (FPGB) diffracted by a circular aperture is derived in the far field. The energy flux distributions and the diffraction effect introduced by the aperture are studied and illustrated graphically. Moreover, the influence of the f-parameter and the truncation parameter on the nonparaxiality is demonstrated in detail. In addition, the analytical formulas obtained in this paper can degenerate into un-apertured case when the truncation parameter tends to infinity. This work is beneficial to strengthen the understanding of vectorial properties of the FPGB diffracted by a circular aperture.
The analytical vectorial structure of non-paraxial four-petal Gaussian beams(FPGBs) in the far field has been studied based on vector angular spectrum method and stationary phase method. In terms of analytical electromagnetic representations of the T E and TM terms, the energy flux distributions of the TE term, the TM term, and the whole beam are derived in the far field, respectively. According to our investigation, the FPGBs can evolve into a number of small petals in the far field. The number of the petals is determined by the order of input beam. The physical pictures of the FPGBs are well illustrated from the vectorial structure, which is beneficial to strengthen the understanding of vectorial properties of the FPGBs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا