ترغب بنشر مسار تعليمي؟ اضغط هنا

Achieving short-distance flight helps improve the efficiency of humanoid robots moving in complex environments (e.g., crossing large obstacles or reaching high places) for rapid emergency missions. This study proposes a design of a flying humanoid ro bot named Jet-HR2. The robot has 10 joints driven by brushless motors and harmonic drives for locomotion. To overcome the challenge of the stable-attitude takeoff in small thrust-to-weight conditions, the robot was designed based on the concept of thrust vectoring. The propulsion system consists of four ducted fans, that is, two fixed on the waist of the robot and the other two mounted on the feet, for thrust vector control. The thrust vector is controlled by adjusting the attitude of the foot during the flight. A simplified model and control strategies are proposed to solve the problem of attitude instability caused by mass errors and joint position errors during takeoff. The experimental results show that the robots spin and dive behaviors during takeoff were effectively suppressed by controlling the thrust vector of the ducted fan on the foot. The robot successfully achieved takeoff at a thrust-to-weight ratio of 1.17 (17 kg / 20 kg) and maintained a stable attitude, reaching a takeoff height of over 1000 mm.
Accurate visual re-localization is very critical to many artificial intelligence applications, such as augmented reality, virtual reality, robotics and autonomous driving. To accomplish this task, we propose an integrated visual re-localization metho d called RLOCS by combining image retrieval, semantic consistency and geometry verification to achieve accurate estimations. The localization pipeline is designed as a coarse-to-fine paradigm. In the retrieval part, we cascade the architecture of ResNet101-GeM-ArcFace and employ DBSCAN followed by spatial verification to obtain a better initial coarse pose. We design a module called observation constraints, which combines geometry information and semantic consistency for filtering outliers. Comprehensive experiments are conducted on open datasets, including retrieval on R-Oxford5k and R-Paris6k, semantic segmentation on Cityscapes, localization on Aachen Day-Night and InLoc. By creatively modifying separate modules in the total pipeline, our method achieves many performance improvements on the challenging localization benchmarks.
236 - Jinhan Guo , Yuhao Zhou , Yang Guo 2021
As one of the main formation mechanisms of solar filament formation, the chromospheric evaporation-coronal condensation model has been confirmed by numerical simulations to explain the formation of filament threads very well in flux tubes with single dips. However, coronal magnetic extrapolations indicated that some magnetic field lines might possess more than one dip. It is expected that the formation process would be significantly different in this case compared to a single-dipped magnetic flux tube. In this paper, based on the evaporation-condensation model, we study filament thread formation in double-dipped magnetic flux tubes by numerical simulations. We find that only with particular combinations of magnetic configuration and heating, e.g., concentrated localized heating and a long magnetic flux tube with deep dips, can two threads form and persist in a double-dipped magnetic flux tube. Comparing our parametric survey with observations, we conclude that such magnetically connected threads due to multiple dips are more likely to exist in quiescent filaments than in active-region filaments. Moreover, we find that these threads are usually shorter than independently trapped threads, which might be one of the reasons why quiescent filaments have short threads. These characteristics of magnetically connected threads could also explain barbs and vertical threads in quiescent filaments.
Recent years have witnessed an upsurge of interest in employing flexible machine learning models for instrumental variable (IV) regression, but the development of uncertainty quantification methodology is still lacking. In this work we present a scal able quasi-Bayesian procedure for IV regression, building upon the recently developed kernelized IV models. Contrary to Bayesian modeling for IV, our approach does not require additional assumptions on the data generating process, and leads to a scalable approximate inference algorithm with time cost comparable to the corresponding point estimation methods. Our algorithm can be further extended to work with neural network models. We analyze the theoretical properties of the proposed quasi-posterior, and demonstrate through empirical evaluation the competitive performance of our method.
232 - Yuhao Zhou , Xihua Li , Yunbo Cao 2021
In educational applications, Knowledge Tracing (KT), the problem of accurately predicting students responses to future questions by summarizing their knowledge states, has been widely studied for decades as it is considered a fundamental task towards adaptive online learning. Among all the proposed KT methods, Deep Knowledge Tracing (DKT) and its variants are by far the most effective ones due to the high flexibility of the neural network. However, DKT often ignores the inherent differences between students (e.g. memory skills, reasoning skills, ...), averaging the performances of all students, leading to the lack of personalization, and therefore was considered insufficient for adaptive learning. To alleviate this problem, in this paper, we proposed Leveled Attentive KNowledge TrAcing (LANA), which firstly uses a novel student-related features extractor (SRFE) to distill students unique inherent properties from their respective interactive sequences. Secondly, the pivot module was utilized to dynamically reconstruct the decoder of the neural network on attention of the extracted features, successfully distinguishing the performance between students over time. Moreover, inspired by Item Response Theory (IRT), the interpretable Rasch model was used to cluster students by their ability levels, and thereby utilizing leveled learning to assign different encoders to different groups of students. With pivot module reconstructed the decoder for individual students and leveled learning specialized encoders for groups, personalized DKT was achieved. Extensive experiments conducted on two real-world large-scale datasets demonstrated that our proposed LANA improves the AUC score by at least 1.00% (i.e. EdNet 1.46% and RAIEd2020 1.00%), substantially surpassing the other State-Of-The-Art KT methods.
This paper is devoted to studying an inexact augmented Lagrangian method for solving a class of manifold optimization problems, which have non-smooth objective functions and non-negative constraints. Under the constant positive linear dependence cond ition on manifold, we show that the proposed method converges to a stationary point of the non-smooth manifold optimization problem. Moreover, we propose a globalized semi-smooth Newton method to solve the augmented Lagrangian subproblem on manifolds efficiently. The local superlinear convergence of the manifold semi-smooth Newton method is also established under some suitable conditions. Finally, numerical experiments on compressed modes and (constrained) sparse PCA illustrate the advantages of the proposed method in terms of accuracy and computational efficiency.
201 - Yuhao Zhou , Ye Qing , 2020
Petabytes of data are generated each day by emerging Internet of Things (IoT), but only few of them can be finally collected and used for Machine Learning (ML) purposes due to the apprehension of data & privacy leakage, which seriously retarding MLs growth. To alleviate this problem, Federated learning is proposed to perform model training by multiple clients combined data without the dataset sharing within the cluster. Nevertheless, federated learning introduces massive communication overhead as the synchronized data in each epoch is of the same size as the model, and thereby leading to a low communication efficiency. Consequently, variant methods mainly focusing on the communication rounds reduction and data compression are proposed to reduce the communication overhead of federated learning. In this paper, we propose Overlap-FedAvg, a framework that parallels the model training phase with model uploading & downloading phase, so that the latter phase can be totally covered by the former phase. Compared to vanilla FedAvg, Overlap-FedAvg is further developed with a hierarchical computing strategy, a data compensation mechanism and a nesterov accelerated gradients~(NAG) algorithm. Besides, Overlap-FedAvg is orthogonal to many other compression methods so that they can be applied together to maximize the utilization of the cluster. Furthermore, the theoretical analysis is provided to prove the convergence of the proposed Overlap-FedAvg framework. Extensive experiments on both conventional and recurrent tasks with multiple models and datasets also demonstrate that the proposed Overlap-FedAvg framework substantially boosts the federated learning process.
While PageRank has been extensively used to rank sport tournament participants (teams or individuals), its superiority over simpler ranking methods has been never clearly demonstrated. We use sports results from 18 major leagues to calibrate a state- of-art model for synthetic sports results. Model data are then used to assess the ranking performance of PageRank in a controlled setting. We find that PageRank outperforms the benchmark ranking by the number of wins only when a small fraction of all games have been played. Increased randomness in the data, such as intrinsic randomness of outcomes or advantage of home teams, further reduces the range of PageRanks superiority. We propose a new PageRank variant which outperforms PageRank in all evaluated settings, yet shares its sensitivity to increased randomness in the data. Our main findings are confirmed by evaluating the ranking algorithms on real data. Our work demonstrates the danger of using novel metrics and algorithms without considering their limits of applicability.
Optimal power flow (OPF) is a very fundamental but vital optimization problem in the power system, which aims at solving a specific objective function (ex.: generator costs) while maintaining the system in the stable and safe operations. In this pape r, we adopted the start-of-the-art artificial intelligence (AI) techniques to train an agent aiming at solving the AC OPF problem, where the nonlinear power balance equations are considered. The modified IEEE-14 bus system were utilized to validate the proposed approach. The testing results showed a great potential of adopting AI techniques in the power system operations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا