ترغب بنشر مسار تعليمي؟ اضغط هنا

We have developed a statistical method named IsoDOT to assess differential isoform expression (DIE) and differential isoform usage (DIU) using RNA-seq data. Here isoform usage refers to relative isoform expression given the total expression of the co rresponding gene. IsoDOT performs two tasks that cannot be accomplished by existing methods: to test DIE/DIU with respect to a continuous covariate, and to test DIE/DIU for one case versus one control. The latter task is not an uncommon situation in practice, e.g., comparing paternal and maternal allele of one individual or comparing tumor and normal sample of one cancer patient. Simulation studies demonstrate the high sensitivity and specificity of IsoDOT. We apply IsoDOT to study the effects of haloperidol treatment on mouse transcriptome and identify a group of genes whose isoform usages respond to haloperidol treatment.
Clustering methods have led to a number of important discoveries in bioinformatics and beyond. A major challenge in their use is determining which clusters represent important underlying structure, as opposed to spurious sampling artifacts. This chal lenge is especially serious, and very few methods are available when the data are very high in dimension. Statistical Significance of Clustering (SigClust) is a recently developed cluster evaluation tool for high dimensional low sample size data. An important component of the SigClust approach is the very definition of a single cluster as a subset of data sampled from a multivariate Gaussian distribution. The implementation of SigClust requires the estimation of the eigenvalues of the covariance matrix for the null multivariate Gaussian distribution. We show that the original eigenvalue estimation can lead to a test that suffers from severe inflation of type-I error, in the important case where there are huge single spikes in the eigenvalues. This paper addresses this critical challenge using a novel likelihood based soft thresholding approach to estimate these eigenvalues which leads to a much improved SigClust. These major improvements in SigClust performance are shown by both theoretical work and an extensive simulation study. Applications to some cancer genomic data further demonstrate the usefulness of these improvements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا