ترغب بنشر مسار تعليمي؟ اضغط هنا

Visual analytics have played an increasingly critical role in the Internet of Things, where massive visual signals have to be compressed and fed into machines. But facing such big data and constrained bandwidth capacity, existing image/video compress ion methods lead to very low-quality representations, while existing feature compression techniques fail to support diversified visual analytics applications/tasks with low-bit-rate representations. In this paper, we raise and study the novel problem of supporting multiple machine vision analytics tasks with the compressed visual representation, namely, the information compression problem in analytics taxonomy. By utilizing the intrinsic transferability among different tasks, our framework successfully constructs compact and expressive representations at low bit-rates to support a diversified set of machine vision tasks, including both high-level semantic-related tasks and mid-level geometry analytic tasks. In order to impose compactness in the representations, we propose a codebook-based hyperprior, which helps map the representation into a low-dimensional manifold. As it well fits the signal structure of the deep visual feature, it facilitates more accurate entropy estimation, and results in higher compression efficiency. With the proposed framework and the codebook-based hyperprior, we further investigate the relationship of different task features owning different levels of abstraction granularity. Experimental results demonstrate that with the proposed scheme, a set of diversified tasks can be supported at a significantly lower bit-rate, compared with existing compression schemes.
212 - Yueyu Hu , Wenhan Yang , Zhan Ma 2020
Image compression is one of the most fundamental techniques and commonly used applications in the image and video processing field. Earlier methods built a well-designed pipeline, and efforts were made to improve all modules of the pipeline by handcr afted tuning. Later, tremendous contributions were made, especially when data-driven methods revitalized the domain with their excellent modeling capacities and flexibility in incorporating newly designed modules and constraints. Despite great progress, a systematic benchmark and comprehensive analysis of end-to-end learned image compression methods are lacking. In this paper, we first conduct a comprehensive literature survey of learned image compression methods. The literature is organized based on several aspects to jointly optimize the rate-distortion performance with a neural network, i.e., network architecture, entropy model and rate control. We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes. With this survey, the main challenges of image compression methods are revealed, along with opportunities to address the related issues with recent advanced learning methods. This analysis provides an opportunity to take a further step towards higher-efficiency image compression. By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance, especially on high-resolution images. Extensive benchmark experiments demonstrate the superiority of our model in rate-distortion performance and time complexity on multi-core CPUs and GPUs. Our project website is available at https://huzi96.github.io/compression-bench.html.
The past decades have witnessed the rapid development of image and video coding techniques in the era of big data. However, the signal fidelity-driven coding pipeline design limits the capability of the existing image/video coding frameworks to fulfi ll the needs of both machine and human vision. In this paper, we come up with a novel image coding framework by leveraging both the compressive and the generative models, to support machine vision and human perception tasks jointly. Given an input image, the feature analysis is first applied, and then the generative model is employed to perform image reconstruction with features and additional reference pixels, in which compact edge maps are extracted in this work to connect both kinds of vision in a scalable way. The compact edge map serves as the basic layer for machine vision tasks, and the reference pixels act as a sort of enhanced layer to guarantee signal fidelity for human vision. By introducing advanced generative models, we train a flexible network to reconstruct images from compact feature representations and the reference pixels. Experimental results demonstrate the superiority of our framework in both human visual quality and facial landmark detection, which provide useful evidence on the emerging standardization efforts on MPEG VCM (Video Coding for Machine).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا