ترغب بنشر مسار تعليمي؟ اضغط هنا

Designing high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Previous approaches, e.g. the seminal nanometer-sized quantum corrals, depend on careful positioning of adatoms at clean surfaces. Here we demonstrate an entirely different approach, inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphenes unique properties, namely gate-tunable light-like carriers, we create Whispering Gallery Mode (WGM) resonators defined by circular pn-junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range, independently and in situ. The confined modes, revealed through characteristic resonances in the tunneling spectrum, originate from Klein scattering at pn junction boundaries. The WGM-type confinement and resonances are a new addition to the quantum electron-optics toolbox, paving the way to real-world electronic lenses and resonators.
A previously unknown optical transient (OT 120926) has been observed in the constellation Bootes. The transient flared to magnitude 4.7, which is comparable to the visual magnitudes of the nearby stars $pi$ Boo and $omicron$ Boo. Database searches do not yield an unambiguous identification of a quiescent counterpart of this transient but do identify several candidates. However, none of the candidate stellar counterparts have shown any credible evidence of previous variability in the All-Sky Automated Survey or the Catalina Real-time Transient Survey. A flare on the nearby high proper motion, probable M dwarf star LP 440-48 could have produced OT 120926, but the amplitude of the flare would be an unprecedented 11.3 magnitudes. The current record amplitude for such flares on M dwarfs is 9.5 magnitudes.
We report on magnetotransport measurements of multi-terminal suspended graphene devices. Fully developed integer quantum Hall states appear in magnetic fields as low as 2 T. At higher fields the formation of longitudinal resistance minima and transve rse resistance plateaus are seen corresponding to fractional quantum Hall states, most strongly for { u}= 1/3. By measuring the temperature dependence of these resistance minima, the energy gap for the 1/3 fractional state in graphene is determined to be at ~20 K at 14 T.
We report variation of the work function for single and bi-layer graphene devices measured by scanning Kelvin probe microscopy (SKPM). Using the electric field effect, the work function of graphene can be adjusted as the gate voltage tunes the Fermi level across the charge neutrality point. Upon biasing the device, the surface potential map obtained by SKPM provides a reliable way to measure the contact resistance of individual electrodes contacting graphene.
Motivated by the universality of Hawking radiation and that of the anomaly cancellation technique as well as that of the effective action method, we investigate the Hawking radiation of a Schwarzschild black hole in the isotropic coordinates via the cancellation of gravitational anomaly. After performing a dimensional reduction from the four-dimensional isotropic Schwarzschild metric, we show that this reduction procedure will, in general, result in two classes of two-dimensional effective metrics: the conformal equivalent and the inequivalent ones. For the physically equivalent class, the two-dimensional effective metric displays such a distinct feature that the determinant is not equal to the unity ($sqrt{-g} eq 1$), but also vanishes at the horizon, the latter of which possibly invalidates the anomaly analysis there. ... This is an updated version to replace our e-print arXiv:0709.0044 [hep-th]. Abstract is too long to exceed the limit of 24 lines by arXiv.
We comment on the consistence of the epsilon anti-symmetric tensor adopted in [R. Banerjee and S. Kulkarni, arXiv:0707.2449] when it is generalized in the general case where $sqrt{-g} eq 1$. It is pointed out that the correct non-minimal consistent gauge and gravitational anomalies should by multiplied a factor $sqrt{-g} eq 1$. We also sketch the generalization of their work to the $sqrt{-g} eq 1$ case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا