ترغب بنشر مسار تعليمي؟ اضغط هنا

75 - Yue Chang , C. P. Sun 2011
We study a hybrid nano-mechanical system coupled to a spin ensemble as a quantum simulator to favor a quantum interference effect, the electromagnetically induced transparency (EIT). This system consists of two nano-mechanical resonators (NAMRs), eac h of which coupled to a nuclear spin ensemble. It could be regarded as a crucial element in the quantum network of NAMR arrays coupled to spin ensembles. Here, the nuclear spin ensembles behave as a long-lived transducer to store and transfer the NAMRs quantum information. This system shows the analog of EIT effect under the driving of a probe microwave field. The double-EIT phenomenon emerges in the large $N$ (the number of the nuclei) limit with low excitation approximation, because the interactions between the spin ensemble and the two NAMRs are reduced to the coupling of three harmonic oscillators. Furthermore, the group velocity is reduced in the two absorption windows.
125 - Yue Chang , Z. R. Gong , 2010
A resonant two level atom doped in one dimensional waveguide behaves as a mirror, but this single-atom mirror can only reflect single photon perfectly at a specific frequency. For a one dimensional coupled-resonator waveguide, we propose to extend th e perfect reflection region from a specific frequency to a wide band by placing many atoms individually in the resonators in a finite coordinate region of the waveguide. Such a doped resonator array promises us to control the propagation of a practical photon wave packet with certain momentum distribution instead of a single photon, which is ideally represented by a plane wave with specific momentum. The studies based on the discrete-coordinate scattering theory display that such hybrid structure indeed provides a near-perfect reflection for single photon in a wide band. We also calculated photon group velocity distribution, which shows that the perfect reflection with wide band exactly corresponds to the stopping light region.
60 - Yue Chang , T. Shi , Yu-xi Liu 2009
We study how an oscillating mirror affects the electromagnetically induced transparency (EIT) of an atomic ensemble, which is confined in a gas cell placed inside a micro-cavity with an oscillating mirror in one end. The oscillating mirror is modeled as a quantum mechanical harmonic oscillator. The cavity field acts as a probe light of the EIT system and also produces a light pressure on the oscillating mirror. The back-action from the mirror to the cavity field results in several (from one to five) steady-states for this atom-assisted optomechanical cavity, producing a complex structure in its EIT. We calculate the susceptibility with respect to the few (from one to three) stable solutions found here for the equilibrium positions of the oscillating mirror. We find that the EIT of the atomic ensemble can be significantly changed by the oscillating mirror, and also that the various steady states of the mirror have different effects on the EIT.
211 - Yue Chang , H. Ian , 2008
The recently increasing explorations for cavity optomechanical coupling assisted by a single atom or an atomic ensemble have opened an experimentally accessible fashion to interface quantum optics and nano (micro) -mechanical systems. In this paper, we study in details such composite quantum dynamics of photon, phonon and atoms, specified by the triple coupling, which only exists in this triple hybrid system: The cavity QED system with a movable end mirror. We exactly diagonalize the Hamiltonian of the triple hybrid system under the parametric resonance condition. We find that, with the rotating-wave approximation, the hybrid system is modeled by a generalized spin-orbit coupling where the orbital angular momentum operator is defined through a Jordan-Schwinger realization with two bosonic modes, corresponding to the mirror oscillation and the single mode photon of the cavity. In the quasi-classical limit of very large angular momentum, this system will behave like a standard cavity-QED system described by the Jaynes-Cummings model as the angular momentum operators are transformed to bosonic operators of a single mode. We test this observation with an experimentally accessible system with the atom in the cavity with a moving mirror.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا