ترغب بنشر مسار تعليمي؟ اضغط هنا

We establish a quantitative version of the Tracy--Widom law for the largest eigenvalue of high dimensional sample covariance matrices. To be precise, we show that the fluctuations of the largest eigenvalue of a sample covariance matrix $X^*X$ converg e to its Tracy--Widom limit at a rate nearly $N^{-1/3}$, where $X$ is an $M times N$ random matrix whose entries are independent real or complex random variables, assuming that both $M$ and $N$ tend to infinity at a constant rate. This result improves the previous estimate $N^{-2/9}$ obtained by Wang [73]. Our proof relies on a Green function comparison method [27] using iterative cumulant expansions, the local laws for the Green function and asymptotic properties of the correlation kernel of the white Wishart ensemble.
Magnetic materials with pyrochlore crystal structure form exotic magnetic states due to the high lattice frustration. In this work we follow the effects of coupling of the lattice and electronic and magnetic degrees of freedom in two Praseodymium-bas ed pyrochlores Pr$_2$Zr$_2$O$_7$ and Pr$_2$Ir$_2$O$_7$. In both materials the presence of magnetic interactions does not lead to magnetically ordered low temperature states, however their electronic properties are different. A comparison of Raman phonon spectra of Pr$_2$Zr$_2$O$_7$ and Pr$_2$Ir$_2$O$_7$ allows us to identify magneto-elastic coupling in Pr$_2$Zr$_2$O$_7$ that elucidates its magnetic properties at intermediate temperatures, and allows us to characterize phonon-electron coupling in the semimetallic Pr$_2$Ir$_2$O$_7$. We also show that the effects of random disorder on the Raman phonon spectra is small.
Kitaev quantum spin liquids (QSLs) are exotic states of matter that are predicted to host Majorana fermions and gauge flux excitations. However, so far all known Kitaev QSL candidates are known to have appreciable non-Kitaev interactions that pushes these systems far from the QSL regime. Using time-domain terahertz spectroscopy (TDTS) we show that the honeycomb cobalt-based Kitaev QSL candidate, BaCo$_2$(AsO$_4$)$_2$, has dominant Kitaev interactions. Due to only small non-Kitaev terms a magnetic continuum consistent with Majorana fermions and the existence of a Kitaev QSL can be induced by a small 4 T out-of-plane-magnetic field. Applying an even smaller in-plane magnetic field $sim$ 0.5 T suppresses the effects of the non-Kitaev interactions and gives rise to a field induced intermediate state also consistent with a QSL. These results may have fundamental impact for realizing quantum computation. Our results demonstrate BaCo$_2$(AsO$_4$)$_2$ as a far more ideal version of Kitaev QSL compared with other candidates.
Pr$_2$Zr$_2$O$_7$ is a pyrochlore quantum spin-ice candidate. Using Raman scattering spectroscopy we probe crystal electric field excitations of Pr$^{3+}$, and demonstrate the importance of their interactions with the lattice. We identify a vibronic interaction with a phonon that leads to a splitting of a doublet crystal field excitation at around 55~meV. We also probe a splitting of the non-Kramers ground state doublet of Pr$^{3+}$ by observing a double line of the excitations to the first excited singlet state $E^0_g rightarrow A_{1g}$. We show that the splitting has a strong temperature dependence, with the doublet structure most prominent between 50~K and 100~K, and the weight of one of the components strongly decreases on cooling. We suggest a static or dynamic deviation of Pr$^{3+}$ from the position in the ideal crystal structure can be the origin of the effect, with the deviation strongly decreasing at low temperatures.
We consider random matrices of the form $H_N=A_N+U_N B_N U^*_N$, where $A_N$, $B_N$ are two $N$ by $N$ deterministic Hermitian matrices and $U_N$ is a Haar distributed random unitary matrix. We establish a universal Central Limit Theorem for the line ar eigenvalue statistics of $H_N$ on all mesoscopic scales inside the regular bulk of the spectrum. The proof is based on studying the characteristic function of the linear eigenvalue statistics, and consists of two main steps: (1) generating Ward identities using the left-translation-invariance of the Haar measure, along with a local law for the resolvent of $H_N$ and analytic subordination properties of the free additive convolution, allow us to derive an explicit formula for the derivative of the characteristic function; (2) a local law for two-point product functions of resolvents is derived using a partial randomness decomposition of the Haar measure. We also prove the corresponding results for orthogonal conjugations.
We consider $N$ by $N$ deformed Wigner random matrices of the form $X_N=H_N+A_N$, where $H_N$ is a real symmetric or complex Hermitian Wigner matrix and $A_N$ is a deterministic real bounded diagonal matrix. We prove a universal Central Limit Theorem for the linear eigenvalue statistics of $X_N$ for all mesoscopic scales both in the spectral bulk and at regular edges where the global eigenvalue density vanishes as a square root. The method relies on the characteristic function method in [47], local laws for the Green function of $X_N$ in [3, 46, 51] and analytic subordination properties of the free additive convolution [24, 41]. We also prove the analogous results for high-dimensional sample covariance matrices.
In this paper, we consider a strongly-repelling model of $n$ ordered particles ${e^{i theta_j}}_{j=0}^{n-1}$ with the density $p({theta_0},cdots, theta_{n-1})=frac{1}{Z_n} exp left{-frac{beta}{2}sum_{j eq k} sin^{-2} left( frac{theta_j-theta_k}{2}ri ght)right}$, $beta>0$. Let $theta_j=frac{2 pi j}{n}+frac{x_j}{n^2}+const$ such that $sum_{j=0}^{n-1}x_j=0$. Define $zeta_n left( frac{2 pi j}{n}right) =frac{x_j}{sqrt{n}}$ and extend $zeta_n$ piecewise linearly to $[0, 2 pi]$. We prove the functional convergence of $zeta_n(t)$ to $zeta(t)=sqrt{frac{2}{beta}} mathfrak{Re} left( sum_{k=1}^{infty} frac{1}{k} e^{ikt} Z_k right)$, where $Z_k$ are i.i.d. complex standard Gaussian random variables.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا