ترغب بنشر مسار تعليمي؟ اضغط هنا

233 - Yuanyou Cheng 2013
The Riemann hypothesis is equivalent to the $varpi$-form of the prime number theorem as $varpi(x) =O(xsp{1/2} logsp{2} x)$, where $varpi(x) =sumsb{nle x} bigl(Lambda(n) -1big)$ with the sum running through the set of all natural integers. Let ${maths f Z}(s) = -tfrac{zetasp{prime}(s)}{zeta(s)} -zeta(s)$. We use the classical integral formula for the Heaviside function in the form of ${mathsf H}(x) =intsb{m -iinfty} sp{m +iinfty} tfrac{xsp{s}}{s} dd s$ where $m >0$, and ${mathsf H}(x)$ is 0 when $tfrac{1}{2} <x <1$, $tfrac{1}{2}$ when $x=1$, and 1 when $x >1$. However, we diverge from the literature by applying Cauchys residue theorem to the function ${mathsf Z}(s) cdot tfrac{xsp{s}} {s}$, rather than $-tfrac{zetasp{prime}(s)} {zeta(s)} cdot tfrac{xsp{s}}{s}$, so that we may utilize the formula for $tfrac{1}{2}< m <1$, under certain conditions. Starting with the estimate on $varpi(x)$ from the trivial zero-free region $sigma >1$ of ${mathsf Z}(s)$, we use induction to reduce the size of the exponent $theta$ in $varpi(x) =O(xsp{theta} logsp{2} x)$, while we also use induction on $x$ when $theta$ is fixed. We prove that the Riemann hypothesis is valid under the assumptions of the explicit strong density hypothesis and the Lindelof hypothesis recently proven, via a result of the implication on the zero free regions from the remainder terms of the prime number theorem by the power sum method of Turan.
81 - Yuanyou Cheng 2010
The Riemann hypothesis, conjectured by Bernhard Riemann in 1859, claims that the non-trivial zeros of $zeta(s)$ lie on the line $Re(s) =1/2$. The density hypothesis is a conjectured estimate $N(lambda, T) =Obigl(Tsp{2(1-lambda) +epsilon} bigr)$ for a ny $epsilon >0$, where $N(lambda, T)$ is the number of zeros of $zeta(s)$ when $Re(s) gelambda$ and $0 <Im(s) le T$, with $1/2 le lambda le 1$ and $T >0$. The Riemann-von Mangoldt Theorem confirms this estimate when $lambda =1/2$, with $Tsp{epsilon}$ being replaced by $log T$. In an attempt to transform Backlunds proof of the Riemann-von Mangoldt Theorem to a proof of the density hypothesis by convexity, we discovered a different approach utilizing an auxiliary function. The crucial point is that this function should be devised to be symmetric with respect to $Re(s) =1/2$ and about the size of the Euler Gamma function on the right hand side of the line $Re(s) =1/2$. Moreover, it should be analytic and without any zeros in the concerned region. We indeed found such a function, which we call pseudo-Gamma function. With its help, we are able to establish a proof of the density hypothesis. Actually, we give the result explicitly and our result is even stronger than the original density hypothesis, namely it yields $N(lambda, T) le 8.734 log T$ for any $1/2 < lambda < 1$ and $Tge 2445999554999$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا