ترغب بنشر مسار تعليمي؟ اضغط هنا

Carrier injection performed in oxygen-deficient YBa2Cu3O7(YBCO) hetero-structure junctions exhibited tunable resistance that was entirely different with behaviors of semiconductor devices. Tunable superconductivity in YBCO junctions, increasing over 20 K in transition temperature, has achieved by using electric processes. To our knowledge, this is the first observation that intrinsic property of high TC superconductors superconductivity can be adjusted as tunable functional parameters of devices. The fantastic phenomenon caused by carrier injection was discussed based on a proposed charge carrier self-trapping model and BCS theory.
Charge carrier injection performed in Pr0.7Ca0.3MnO3 (PCMO) hetero-structure junctions exhibits stable without electric fields and dramatic changes in both resistances and interface barriers, which are entirely different from behaviors of semiconduct or devices. Disappearance and reversion of interface barriers suggest that the adjustable resistance switching of such hetero-structure oxide devices should associate with motion of charge carriers across interfaces. The results suggested that injected carriers should be still staying in devices and resulted in changes in properties, which guided to a carrier self-trapping and releasing picture in strongly correlated electronic framework. Observations in PCMO and oxygen deficient CeO2 devices show that oxides as functional materials could be used in microelectronics with some novel properties, in which interface is very important.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا