ترغب بنشر مسار تعليمي؟ اضغط هنا

There has been a growing interest in model-agnostic methods that can make deep learning models more transparent and explainable to a user. Some researchers recently argued that for a machine to achieve a certain degree of human-level explainability, this machine needs to provide human causally understandable explanations, also known as causability. A specific class of algorithms that have the potential to provide causability are counterfactuals. This paper presents an in-depth systematic review of the diverse existing body of literature on counterfactuals and causability for explainable artificial intelligence. We performed an LDA topic modelling analysis under a PRISMA framework to find the most relevant literature articles. This analysis resulted in a novel taxonomy that considers the grounding theories of the surveyed algorithms, together with their underlying properties and applications in real-world data. This research suggests that current model-agnostic counterfactual algorithms for explainable AI are not grounded on a causal theoretical formalism and, consequently, cannot promote causability to a human decision-maker. Our findings suggest that the explanations derived from major algorithms in the literature provide spurious correlations rather than cause/effects relationships, leading to sub-optimal, erroneous or even biased explanations. This paper also advances the literature with new directions and challenges on promoting causability in model-agnostic approaches for explainable artificial intelligence.
The use of sophisticated machine learning models for critical decision making is faced with a challenge that these models are often applied as a black-box. This has led to an increased interest in interpretable machine learning, where post hoc interp retation presents a useful mechanism for generating interpretations of complex learning models. In this paper, we propose a novel approach underpinned by an extended framework of Bayesian networks for generating post hoc interpretations of a black-box predictive model. The framework supports extracting a Bayesian network as an approximation of the black-box model for a specific prediction. Compared to the existing post hoc interpretation methods, the contribution of our approach is three-fold. Firstly, the extracted Bayesian network, as a probabilistic graphical model, can provide interpretations about not only what input features but also why these features contributed to a prediction. Secondly, for complex decision problems with many features, a Markov blanket can be generated from the extracted Bayesian network to provide interpretations with a focused view on those input features that directly contributed to a prediction. Thirdly, the extracted Bayesian network enables the identification of four different rules which can inform the decision-maker about the confidence level in a prediction, thus helping the decision-maker assess the reliability of predictions learned by a black-box model. We implemented the proposed approach, applied it in the context of two well-known public datasets and analysed the results, which are made available in an open-source repository.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا