ترغب بنشر مسار تعليمي؟ اضغط هنا

In conventional supervised learning, a training dataset is given with ground-truth labels from a known label set, and the learned model will classify unseen instances to the known labels. In this paper, we study a new problem setting in which there a re unknown classes in the training dataset misperceived as other labels, and thus their existence appears unknown from the given supervision. We attribute the unknown unknowns to the fact that the training dataset is badly advised by the incompletely perceived label space due to the insufficient feature information. To this end, we propose the exploratory machine learning, which examines and investigates the training dataset by actively augmenting the feature space to discover potentially unknown labels. Our approach consists of three ingredients including rejection model, feature acquisition, and model cascade. The effectiveness is validated on both synthetic and real datasets.
This paper studies the problem of learning with augmented classes (LAC), where augmented classes unobserved in the training data might emerge in the testing phase. Previous studies generally attempt to discover augmented classes by exploiting geometr ic properties, achieving inspiring empirical performance yet lacking theoretical understandings particularly on the generalization ability. In this paper we show that, by using unlabeled training data to approximate the potential distribution of augmented classes, an unbiased risk estimator of the testing distribution can be established for the LAC problem under mild assumptions, which paves a way to develop a sound approach with theoretical guarantees. Moreover, the proposed approach can adapt to complex changing environments where augmented classes may appear and the prior of known classes may change simultaneously. Extensive experiments confirm the effectiveness of our proposed approach.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا