ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical control of atomic interactions in a quantum gas is a long-sought goal of cold atom research. Previous experiments have been hindered by short lifetimes and parasitic deformation of the trap potential. Here, we develop and implement a generic scheme for optical control of Feshbach resonance in quantum gases, which yields long condensate lifetimes sufficient to study equilibrium and non-equilibrium physics with negligible parasitic dipole force. We show that fast and local control of interactions leads to intriguing quantum dynamics in new regimes, highlighted by the formation of van der Waals molecules and partial collapse of a Bose condensate.
We propose a hybrid quantum architecture for engineering a photonicMott insulator-superfluid phase transition in a two-dimensional (2D) square lattice of a superconducting transmission line resonator (TLR) coupled to a single nitrogen-vacancy (NV) ce nter encircled by a persistent current qubit. The localization-delocalization transition results from the interplay between the on-site repulsion and the nonlocal tunneling. The phase boundary in the case of photon hopping with real-valued and complex-valued amplitudes can be obtained using the mean-field approach. Also, the quantum jump technique is employed to describe the phase diagram when the dissipative effects are considered. The unique feature of our architecture is the good tunability of effective on-site repulsion and photon-hopping rate, and the local statistical property of TLRs which can be analyzed readily using presentmicrowave techniques. Our work opens new perspectives in quantum simulation of condensed-matter and many-body physics using a hybrid spin circuit-QED system. The experimental challenges are realizable using currently available technologies.
An experiment demonstrating single-pixel single-arm complementary compressive microscopic ghost imaging based on a digital micromirror device (DMD) has been performed. To solve the difficulty of projecting speckles or modulated light patterns onto ti ny biological objects, we instead focus the microscopic image onto the DMD. With this system, we have successfully obtained a magnified image of micron-sized objects illuminated by the microscopes own incandescent lamp. The image quality of our scheme is more than an order of magnitude better than that obtained by conventional compressed sensing with the same total sampling rate, and moreover, the system is robust against intensity instabilities of the light source and may be used under very weak light conditions. Since only one reflection direction of the DMD is used, the other reflection arm is left open for future infrared light sampling. This represents a big step forward toward the practical application of compressive microscopic ghost imaging in the biological and material science fields.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا