ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine whether the spectral energy distribution of UV continuum emission of active galactic nuclei changes during flux variation. We used multi-epoch photometric data of QSOs in the Stripe 82 observed by the SDSS Legacy Survey and selected 10 bri ght QSOs observed with high photometric accuracies, in the redshift range of z = 1.0-2.4 where strong broad emission lines such as Lyalpha and CIV do not contaminate SDSS filters, to examine spectral variation of the UV continuum emission with broadband photometries. All target QSOs showed clear flux variations during the monitoring period 1998-2007, and the multi-epoch flux data in two different bands obtained on the same night showed a linear flux-to-flux relationship for all target QSOs. Assigning the flux in the longer wavelength to the x-axis in the flux-to-flux diagram, the x-intercept of the best-fit linear regression line was positive for most targets, which means that their colors in the observing bands become bluer as they become brighter. Then, the host-galaxy flux was estimated on the basis of the correlation between the stellar mass of the bulge of the host galaxy and the central black hole mass. We found that the longer-wavelength flux of the host galaxy was systematically smaller than that of the fainter extension of the best-fit regression line at the same shorter-wavelength flux for most targets. This result strongly indicates that the spectral shape of the continuum emission of QSOs in the UV region usually becomes bluer as it becomes brighter. We found that the multi-epoch flux-to-flux plots could be fitted well with the standard accretion disk model changing the mass accretion rate with a constant black hole mass for most targets. This finding strongly supports the standard accretion disk model for UV continuum emission of QSOs.
89 - Yu Sakata 2010
We examine whether the spectral energy distribution of optical continuum emission of active galactic nuclei (AGNs) changes during flux variation, based on accurate and frequent monitoring observations of 11 nearby Seyfert galaxies and QSOs carried ou t in the B, V, and I bands for seven years by the MAGNUM telescope. The multi-epoch flux data in any two different bands obtained on the same night show a very tight linear flux to flux relationship for all target AGNs. The flux of the host galaxy within the photometric aperture is carefully estimated by surface brightness fitting to available high-resolution HST images and MAGNUM images. The flux of narrow emission lines in the photometric bands is also estimated from available spectroscopic data. We find that the non-variable component of the host galaxy plus narrow emission lines for all target AGNs is located on the fainter extension of the linear regression line of multi-epoch flux data in the flux to flux diagram. This result strongly indicates that the spectral shape of AGN continuum emission in the optical region does not systematically change during flux variation. The trend of spectral hardening that optical continuum emission becomes bluer as it becomes brighter, which has been reported by many studies, is therefore interpreted as the domination of the variable component of the nearly constant spectral shape of an AGN as it brightens over the non-variable component of the host galaxy plus narrow lines, which is usually redder than AGN continuum emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا