ترغب بنشر مسار تعليمي؟ اضغط هنا

The problem of estimating a sparse signal from low dimensional noisy observations arises in many applications, including super resolution, signal deconvolution, and radar imaging. In this paper, we consider a sparse signal model with non-stationary m odulations, in which each dictionary atom contributing to the observations undergoes an unknown, distinct modulation. By applying the lifting technique, under the assumption that the modulating signals live in a common subspace, we recast this sparse recovery and non-stationary blind demodulation problem as the recovery of a column-wise sparse matrix from structured linear observations, and propose to solve it via block $ell_{1}$-norm regularized quadratic minimization. Due to observation noise, the sparse signal and modulation process cannot be recovered exactly. Instead, we aim to recover the sparse support of the ground truth signal and bound the recovery errors of the signals non-zero components and the modulation process. In particular, we derive sufficient conditions on the sample complexity and regularization parameter for exact support recovery and bound the recovery error on the support. Numerical simulations verify and support our theoretical findings, and we demonstrate the effectiveness of our model in the application of single molecule imaging.
The task of finding a sparse signal decomposition in an overcomplete dictionary is made more complicated when the signal undergoes an unknown modulation (or convolution in the complementary Fourier domain). Such simultaneous sparse recovery and blind demodulation problems appear in many applications including medical imaging, super resolution, self-calibration, etc. In this paper, we consider a more general sparse recovery and blind demodulation problem in which each atom comprising the signal undergoes a distinct modulation process. Under the assumption that the modulating waveforms live in a known common subspace, we employ the lifting technique and recast this problem as the recovery of a column-wise sparse matrix from structured linear measurements. In this framework, we accomplish sparse recovery and blind demodulation simultaneously by minimizing the induced atomic norm, which in this problem corresponds to the block $ell_1$ norm minimization. For perfect recovery in the noiseless case, we derive near optimal sample complexity bounds for Gaussian and random Fourier overcomplete dictionaries. We also provide bounds on recovering the column-wise sparse matrix in the noisy case. Numerical simulations illustrate and support our theoretical results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا