ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 28 gravitationally lensed quasars (23 doubles, 1 quad, and 1 possible triple, and 3 candidates) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in 5 systems, without a-priory knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity > 0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time-delays in order to infer the Hubble constant.
121 - Yosuke Minowa , Ryoichi Kawai , 2014
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This paper presents the realization of an optically levitated solid-state quantum emitter. This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-40-6-906. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
We present the result of Subaru Telescope multi-band adaptive optics observations of the complex gravitationally lensed quasar SDSS J1405+0959, which is produced by two lensing galaxies. These observations reveal dramatically enhanced morphological d etail, leading to the discovery of an additional object 0. 26 from the secondary lensing galaxy, as well as three collinear clumps located in between the two lensing galaxies. The new object is likely to be the third quasar image, although the possibility that it is a galaxy cannot be entirely excluded. If confirmed via future observations, it would be the first three image lensed quasar produced by two galaxy lenses. In either case, we show based on gravitational lensing models and photometric redshift that the collinear clumps represent merging images of a portion of the quasar host galaxy, with a magnification factor of 15 - 20, depending on the model.
We searched for star formation activity associated with high-z Damped Lyman-alpha systems (DLAs) with Subaru telescope. We used a set of narrow-band (NB) filters whose central wavelengths correspond to the redshifted Lyman-alpha emission lines of tar geted DLA absorbers at 3<z<4.5. We detected one apparent NB-excess object located 3.80 arcsec (~28kpc) away from the quasar SDSS J031036.84+005521.7. Follow-up spectroscopy revealed an asymmetric Lyman-alpha emission at z_em=3.115+/-0.003, which perfectly matches the sub-DLA trough at z_abs=3.1150 with logN(HI)/cm^-2=20.05. The Lyman-alpha luminosity is estimated to be L(LyA)=1.07x10^42 erg s^-1, which corresponds to a star formation rate of 0.97 M_odot yr^-1. Interestingly, the detected Lyman-alpha emission is spatially extended with a sharp peak. The large extent of the Lyman-alpha emission is remarkably one-sided toward the quasar line-of-sight, and is redshifted. The observed spatially asymmetric surface brightness profile can be qualitatively explained by a model of a DLA host galaxy, assuming a galactic outflow and a clumpy distribution of HI clouds in the circumgalactic medium. This large Lyman-alpha extension, which is similar to those found in Rauch et al. (2008), could be the result of complicated anisotropic radiative transfer through the surrounding neutral gas embedded in the DLA.
We performed multi-band deep imaging of the field around GRB 050730 to identify the host galaxies of intervening absorbers, which consist of a damped Ly{alpha} absorption (DLA) system at zabs=3.564, a sub-DLA system at zabs=3.022, and strong MgII abs orption systems at zabs=1.773 and 2.253. Our observations were performed after the gamma-ray burst afterglow had disappeared. Thus, our imaging survey has a higher sensitivity to the host galaxies of the intervening absorbers than the normal imaging surveys in the direction of QSOs, for which the QSO glare tends to hide the foreground galaxies. In this deep imaging survey, we could not detect any unambiguous candidates for the host galaxies of the intervening absorbers. Using the 3sigma upper limit of the flux in the optical to mid-infrared observing bands, which corresponds to the UV to optical bands in the rest-frame of the intervening absorbers, we constrained the star-formation rates and stellar masses of the hosts. We estimated the star-formation rates for the intervening absorbers as < 2.5 Msun/yr for z>3 DLAs and < 1.0 Msun/yr for z~2 MgII systems. Their stellar masses are estimated to be several times 10^9 Msun or smaller for all intervening galaxies. These properties are comparable to dwarf galaxies, rather than the massive star-forming galaxies commonly seen in the z>2 galaxy surveys based on emission-line selection or color selection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا