ترغب بنشر مسار تعليمي؟ اضغط هنا

We measured the transverse magnetoresistivity of the mixed valence compound $alpha$-YbAlB$_4$. Two configurations were used where current was applied along [110] direction for both and magnetic field was applied along [-110] and $c$-axis. We found th e transverse magnetoresistivity is highly anisotropic. In the weak field below 1 T, it is consistent with stronger $c$-$f$ hybridization in the $ab$ plane which was suggested from the previous zero field resistivity measurements. At the higher field above 3 T, we observed a negative transverse magnetoresistivity for the field applied along the $c$-axis. The temperature dependences of the resistivity measured at several different fields suggest the suppression of the heavy fermion behavior at the characteristic field of $sim 5.5$ T.
We present the high-precision magnetization data of the valence fluctuating heavy fermion superconductor $beta$-YbAlB$_4$ in a wide temperature range from 0.02 K to 320 K spanning four orders of magnitude. We made detailed analyses of the $T/B$ scali ng of the magnetization, and firmly confirmed the unconventional zero-field quantum criticality (QC) without tuning. We examined other possible scaling relationship such as $T/(B-B_c)^{delta}$ scaling, and confirmed that $delta = 1$ provides the best quality of the fit with an upper bound on the critical magnetic field $vert B_c vert <0.2$~mT. We further discuss the heavy Fermi-liquid component of the magnetization after subtracting the QC component estimated based on the $T/B$ scaling. The temperature dependence of the heavy Fermi-liquid component is found very similar to the magnetization of the polymorph $alpha$-YbAlB$_4$. In addition, the heavy Fermi-liquid component is suppressed in the magnetic field above $sim$ 5 T as in $alpha$-YbAlB$_4$. This was also confirmed by the magnetization measurements up to $sim 50$ T for both $alpha$- and $beta$-YbAlB$_4$. Interestingly, the detailed analyses revealed that the only a part of $f$ electrons participates in the zero-field QC and the heavy fermion behavior. We also present a temperature - magnetic field phase diagram of ybal to illustrate how the characteristic temperature and field scales evolves near the QC.
PrV$_2$Al$_{20}$ is a rare example of a heavy fermion system based on strong hybridization between conduction electrons and nonmagnetic quadrupolar moments of the cubic $Gamma_3$ ground doublet. Here, we report that a high-quality single crystal of P rV$_2$Al$_{20}$ exhibits superconductivity at $T_{rm c}=$ 50 mK in the antiferroquadrupole-ordered state under ambient pressure. The heavy fermion character of the superconductivity is evident from the specific heat jump of $Delta C/T sim 0.3$ J/mol K$^2$ and the effective mass $m^*/m_0 sim 140$ estimated from the temperature dependence of the upper critical field. Furthermore, the high-quality single crystals exhibit double transitions at $T_{rm Q}$ = 0.75 K and $T^{*}$ = 0.65 K associated with quadrupole and octapole degrees of freedom of the $Gamma_3$ doublet. In the ordered state, the specific heat $C/T$ shows a $T^3$ dependence, indicating the gapless mode associated with the quadrupole and/or octapole order. The strong sensitivity to impurity of the superconductivity suggests unconventional character due to significant quadrupolar fluctuations.
Here we provide the first clear evidence of Fermi-liquid breakdown in an intermediate valence system. We employ high precision magnetization measurements of the valence fluctuating superconductor beta-YbAlB4 to probe the quantum critical free energy down to temperatures far below the characteristic energy scale of the valence fluctuations. The observed T/B scaling in the magnetization over three decades not only indicates unconventional quantum criticality, but places an upper bound on the critical magnetic field |B_c| < 0.2 mT, a value comparable with the Earths magnetic field and six orders of magnitude smaller than the valence fluctuation scale. This tiny value of the upper bound on B_c, well inside the superconducting dome, raises the fascinating possibility that valence fluctuating beta-YbAlB4 is intrinsically quantum critical, without tuning the magnetic field, pressure, or composition: the first known example of such a phenomenon in a metal.
Electron accelerations at high Mach number collision-less shocks are investigated by means of two-dimensional electromagnetic Particle-in-Cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron beta_e (the ratio of the thermal pressure to the magnetic pressure). We found electrons are effectively accelerated at a super-high Mach number shock (MA~30) with a mass ratio of M/m=100 and beta_e=0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with the large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely-high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.
$alpha$-YbAlB$_4$ is the locally isostructural polymorph of $beta$-YbAlB$_4$, the first example of an Yb-based heavy fermion superconductor which exhibits pronounced non-Fermi-liquid behavior above $T_{rm c}$. Interestingly, both $alpha$-YbAlB$_4$ an d $beta$-YbAlB$_4$ have strongly intermediate valence. Our single crystal study of the specific heat, magnetization and resistivity has confirmed the Fermi liquid ground state of $alpha$-YbAlB$_4$ ~in contrast with the quantum criticality observed in $beta$-YbAlB$_4$. Both systems exhibit Kondo lattice behavior with the characteristic temperature scale $T^* sim$ 8 K in addition to a valence fluctuation scale $sim 200$ K. Below $T^*$, $alpha$-YbAlB$_4$ a heavy Fermi liquid state with an electronic specific heat coefficient $gammasim$ 130 mJ/mol K$^2$ and a large Wilson ratio more than 7, which indicates ferromagnetic correlation between Yb moments. A large anisotropy in the resistivity suggests that the hybridization between 4$f$ and conduction electrons is much stronger in the $ab$-plane than along the c-axis. The strongly anisotropic hybridization as well as the large Wilson ratio is the key to understand the unusual Kondo lattice behavior and heavy fermion formation in mixed valent compounds.
Fermi liquid theory, the standard theory of metals, has been challenged by a number of observations of anomalous metallic behavior found in the vicinity of a quantum phase transition. The breakdown of the Fermi liquid is accomplished by fine-tuning t he material to a quantum critical point using a control parameter such as the magnetic field, pressure, or chemical composition. Our high precision magnetization measurements of the ultrapure f-electron based superconductor {beta}-YbAlB4 demonstrate a scaling of its free energy indicative of zero-field quantum criticality without tuning in a metal. The breakdown of Fermi-liquid behavior takes place in a mixed-valence state, in sharp contrast with other known examples of quantum critical f-electron systems that are magnetic Kondo lattice systems with integral valence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا