ترغب بنشر مسار تعليمي؟ اضغط هنا

We report deep ALMA observations complemented with associated HST imaging for a luminous (m_uv=25) galaxy, `Himiko, at a redshift z=6.595. The galaxy is remarkable for its high star formation rate, 100 Mo/yr, securely estimated from our deep HST and Spitzer photometry, and the absence of any evidence for strong AGN activity or gravitational lensing magnification. Our ALMA observations probe an order of magnitude deeper than previous IRAM observations, yet fail to detect a 1.2mm dust continuum, indicating a flux <52uJy comparable with or weaker than that of local dwarf irregulars with much lower star formation rates. We likewise provide a strong upper limit for the flux of [CII] 158um, L([CII]) < 5.4x10^7 Lo, a diagnostic of the hot interstellar gas often described as a valuable probe for early galaxies. In fact, our observations indicate Himiko lies off the local L([CII]) - star formation rate scaling relation by a factor of more than 30. Both aspects of our ALMA observations suggest Himiko is an unique object with a very low dust content and perhaps nearly primordial interstellar gas. Our HST images provide unique insight into the morphology of this remarkable source, highlighting an extremely blue core of activity and two less extreme associated clumps. Himiko is undergoing a triple major merger event whose extensive ionized nebula of Lyman alpha emitting gas, discovered in our earlier work with Subaru, is powered by star formation and the dense circum-galactic gas. We are likely witnessing an early massive galaxy during a key period of its mass assembly close to the end of the reionization era.
We investigate the one-dimensional Hubbard ring with attractive interaction in the presence of imbalanced spin populations by using the exact diagonalization method. The singlet pairing correlation function is found to show spatial oscillations with power-law decay as expected in the Fulde-Ferrell-Larkin-Ovchinnikov state of a Tomonaga-Luttinger liquid. In the strong coupling regime, the system shows an anomalous flux quantization of period h=4e, half of the superconducting flux quantum of h=2e, as recently predicted by mean-field analysis, together with various flux quanta smaller than h=4e. Notably, the observed flux quanta are determined by the difference between the system size NL and electron number N_e as h=(N_L-N_e)e.
We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z~7-12 using deep images from the UDF12 campaign, data which offers two distinct advantages over that used in earlier work. Firstly, we utilize the increased S/N ratio offered by the UDF12 imaging to provide improved size measurements for known galaxies at z=6.5-8 in the HUDF. Specifically, we stack the new deep F140W image with the existing F125W data in order to provide improved measurements of the half-light radii of z-dropouts. Similarly we stack this image with the new deep UDF12 F160W image to obtain new size measurements for a sample of Y-dropouts. Secondly, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z>8, we have been able to extend the measurement of average galaxy size out to significantly higher redshifts. Restricting our size measurements to sources which are now detected at >15sigma, we confirm earlier indications that the average half-light radii of z~7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z~8. Modeling the evolution of the average half-light radius as a power-law (1+z)^s, we obtain a best-fit index of s=-1.28+/-0.13 over the redshift range z~4-12, mid-way between the physically expected evolution for baryons embedded in dark halos of constant mass (s=-1) and constant velocity (s=-1.5). A clear size-luminosity relation, such as that found at lower redshift, is also evident in both our z- and Y-dropout sample. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0L*_z=3.(abridged)
We investigate the periodic Anderson model with $bm{k}$-dependent $c$-$f$ mixing reproducing the point nodes of the hybridization gap by using the dynamical mean-field theory combined with the exact diagonalization method. At low temperature below a coherence temperature $T_0$, the imaginary part of the self-energy is found to be proportional to $T^2$ and the pseudogap with two characteristic energies $tilde{it Delta}_1$ and $tilde{it Delta}_2$ is clearly observed for $Tll T_0$, while the pseudogap is smeared with increasing $T$ and then disappears at high temperature $T simg T_0$ due to the evolution of the imaginary self-energy. When the Coulomb interaction between $f$ electrons $U$ increases, $tilde{it Delta}_1$, $tilde{it Delta}_2$, and $T_0$ together with $T_{rm max}$ at which the magnetic susceptibility is maximum decrease in proportion to the renormalization factor $Z$ resulting in a heavy-fermion semiconductor with a large mass enhancement $m^*/m=Z^{-1}$ for large $U$. We also examine the effect of the external magnetic field $H$ and find that the magnetization $M$ shows two metamagnetic anomalies $H_1$ and $H_2$ corresponding to $tilde{it Delta}_1$ and $tilde{it Delta}_2$ which are reduced due to the effect of $H$ together with $Z$. Remarkably, $Z^{-1}$ is found to be largely enhanced due to $H$ especially for $H_1 siml H siml H_2$, where the field induced heavy-fermion state is realized. The obtained results seem to be consistent with the experimental results observed in the anisotropic Kondo semiconductors such as CeNiSn.
An NQR experiment revealed superconductivity of Pr$_2$Ba$_4$Cu$_7$O$_{15-delta}$ (Pr247) to be realized on CuO double chain layers and suggests possibility of novel one-dimensional(1D) superconductivity. To clarify the nature of the 1D superconductiv ity, we calculate the band dispersions of Pr247 by using the generalized gradient approximation(GGA). It indicates that Fermi surface of CuO double chains is well described to the electronic structure of a quasi-1D system. Assuming the zigzag Hubbard chain model to be an effective model of the system, we derive tight binding parameters of the model from a fit to the result of GGA. Based on the Tomonaga-Luttinger liquid theory, we estimate transition temperature ($T_c$) of the quasi-1D zigzag Hubbard model from the calculated value of the Luttinger liquid parameter $K_{rho}$. The result of $T_c$ is consistent with that of experiments in Pr247 and it suggests that the mechanism of the superconductivity is well understood within the concept of the Tomonaga-Luttinger liquid.
We investigate the stellar populations of Lyman alpha emitters (LAEs) at z=5.7 and 6.6 in a 0.65 deg^2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with Subaru/Suprime-Cam, UKIRT/WFCAM, and Spitzer/IRAC. We produce s tacked multiband images at each redshift from 165 (z=5.7) and 91 (z=6.6) IRAC-undetected objects, to derive typical spectral energy distributions (SEDs) of z~6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the HST/WFC3 z-dropout galaxies of similar Muv, with a spectral slope beta ~ -3, but at the same time they have red UV-to-optical colors with detection in the 3.6um band. Using SED fitting we find that the stacked LAEs have low stellar masses of ~(3-10)*10^7 Msun, very young ages of ~1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z=6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical color while keeping the UV color sufficiently blue. We infer that typical LAEs at z~6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyman alpha escape fraction from z=5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons to be f_esc^ion~0.6 at z=5.7 and ~0.9 at z=6.6. We also compare the stellar populations of our LAEs with that of stacked HST/WFC3 z-dropout galaxies.
We investigate the electronic states of a one-dimensional two-orbital Hubbard model with band splitting by the exact diagonalization method. The Luttinger liquid parameter $K_{rho}$ is calculated to obtain superconducting (SC) phase diagram as a func tion of on-site interactions: the intra- and inter-orbital Coulomb $U$ and $U$, the Hund coupling $J$, and the pair transfer $J$. In this model, electron and hole Fermi pockets are produced when the Fermi level crosses both the upper and lower orbital bands. We find that the system shows two types of SC phases, the SC Roman{u-large} for $U>U$ and the SC Roman{u-large} for $U<U$, in the wide parameter region including both weak and strong correlation regimes. Pairing correlation functions indicate that the most dominant pairing for the SC Roman{u-large} (SC Roman{u-large}) is the intersite (on-site) intraorbital spin-singlet with (without) sign reversal of the order parameters between two Fermi pockets. The result of the SC Roman{u-large} is consistent with the sign-reversing s-wave pairing that has recently been proposed for iron oxypnictide superconductors.
We investigate the stellar populations of Lyman alpha emitters (LAEs) at z=3.1 and 3.7 in 0.65 deg^2 of the Subaru/XMM-Newton Deep Field, based on rest-frame UV-to-optical photometry obtained from the Subaru/XMM-Newton Deep Survey, the UKIDSS/Ultra D eep Survey, and the Spitzer legacy survey of the UKIDSS/UDS. Among a total of 302 LAEs (224 for z=3.1 and 78 for z=3.7), only 11 are detected in the K band, i.e., brighter than K(3sigma)=24.1 mag. Eight of the 11 K-detected LAEs are spectroscopically confirmed. We find that the K-undetected objects, which should closely represent the LAE population as a whole, have low stellar masses of ~ 10^8 - 10^8.5 Msun, modest SFRs of 1 - 100 Msun yr^-1, and modest dust extinction of E(B-V) < 0.2. The K-detected objects are massive, Mstar ~ 10^9 - 10^10.5 Msun, and have significant dust extinction with a median of E(B-V) ~= 0.3. Four K-detected objects with the reddest spectral energy distributions, two of which are spectroscopically confirmed, are heavily obscured with E(B-V) ~ 0.65, and their continua resemble those of some local ULIRGs. Interestingly, they have large Lyman alpha equivalent widths ~= 70 - 250 A. If these four are excluded, our sample has a weak anti-correlation between EW(Lya) and Mstar. We compare the stellar masses and the specific star formation rates (sSFR) of LAEs with those of Lyman-break galaxies, distant red galaxies, submillimetre galaxies, and I- or K-selected galaxies with z_phot ~ 3. We find that the LAE population is the least massive among all the galaxy populations in question, but with relatively high sSFRs, while NIR-detected LAEs have Mstar and sSFR similar to LBGs. Our reddest four LAEs have very high sSFRs in spite of large Mstar, thus occupying a unique region in the Mstar versus sSFR space. (abridged)
We report the discovery of a giant Lya emitter (LAE) with a Spitzer/IRAC counterpart near the reionization epoch at z=6.595. The giant LAE is found from the extensive 1 deg^2 Subaru narrow-band survey for z=6.6 LAEs in the Subaru/XMM-Newton Deep Surv ey (SXDS) field, and subsequently identified by deep spectroscopy of Keck/DEIMOS and Magellan/IMACS. Among our 207 LAE candidates, this LAE is not only the brightest narrow-band object with L(Lya) = 3.9+/-0.2 x 10^43 erg/s in our survey volume of 10^6 Mpc^3, but also a spatially extended Lya nebula with the largest isophotal area whose major axis is at least ~3. This object is more likely to be a large Lya nebula with a size of >~17 kpc than to be a strongly-lensed galaxy by a foreground object. Our Keck spectrum with medium-high spectral and spatial resolutions suggests that the velocity width is v(FWHM)=251+/-21 km/s, and that the line-center velocity changes by ~60 km/s in a 10-kpc range. The stellar mass and star-formation rate are estimated to be 0.9-5.0 x 10^10 Mo and >34 Mo/yr, respectively, from the combination of deep optical to infrared images of Subaru, UKIDSS-Ultra Deep Survey, and Spitzer/IRAC. Although the nature of this object is not yet clearly understood, this could be an important object for studying cooling clouds accreting onto a massive halo, or forming-massive galaxies with significant outflows contributing to cosmic reionization and metal enrichment of inter-galactic medium.
Using the numerical diagonalization method, we examine the one-dimensional t_1-t_2-J_1-J_2 model (zigzag chain t-J model) which represents an effective model for metallic CuO double chain in the superconductor Pr_2Ba_4Cu_7O_15-delta. Based on the Tom onaga-Luttinger liquid theory, we calculate the Luttinger-liquid parameter K_rho as a function of electron density n. It is found that superconductivity is realized in parameter region corresponding to the experimental result. We show phase diagram of spin gap on the t_2/|t_1|-n plane by analyzing the expectation value of twist-operator Z_sigma in the spin sector. The spin gap appears in the region with large t_2/|t_1|, where the phase boundary at half-filling is consistent with that of the known frustrated quantum spin system. The analysis also suggests that the estimated value of the spin gap reaches 100K in the realistic parameter region of Pr_2Ba_4Cu_7O_15-delta.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا