ترغب بنشر مسار تعليمي؟ اضغط هنا

We report specific heat ($C$) and magnetization ($M$) of single crystalline Ce$_4$Pt$_{12}$Sn$_{25}$ at temperature down to $sim$50mK and in fields up to 3T. $C/T$ exhibits a sharp anomaly at 180mK, with a large $Delta C/Tsim$30J/molK$^2$-Ce, which, together with the corresponding cusp-like magnetization anomaly, indicates an antiferromagnetic (AFM) ground state with a Neel temperature $T_N$=180mK. Numerical calculations based on a Heisenberg model reproduce both zero-field $C$ and $M$ data, thus placing Ce$_4$Pt$_{12}$Sn$_{25}$ in the weak exchange coupling $J<J_c$ limit of the Doniach diagram, with a very small Kondo scale $T_Kll T_N$. Magnetic field suppresses the AFM state at $H^*approx$0.7T, much more effectively than expected from the Heisenberg model, indicating additional effects possibly due to frustration or residual Kondo screening.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا