ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex many-body interaction in perovskite manganites gives rise to a strong competition between ferromagnetic metallic and charge ordered phases with nanoscale electronic inhomogeneity and glassy behaviors. Investigating this glassy state requires high resolution imaging techniques with sufficient sensitivity and stability. Here, we present the results of a near-field microwave microscope imaging on the strain driven glassy state in a manganite film. The high contrast between the two electrically distinct phases allows direct visualization of the phase separation. The low temperature microscopic configurations differ upon cooling with different thermal histories. At sufficiently high temperatures, we observe switching between the two phases in either direction. The dynamic switching, however, stops below the glass transition temperature. Compared with the magnetization data, the phase separation was microscopically frozen, while spin relaxation was found in a short period of time.
This paper presents the design and fabrication of batch-processed cantilever probes with electrical shielding for scanning microwave impedance microscopy. The diameter of the tip apex, which defines the electrical resolution, is less than 50 nm. The width of the stripline and the thicknesses of the insulation dielectrics are optimized for a small series resistance (< 5 W) and a small background capacitance (~ 1 pF), both critical for high sensitivity imaging on various samples. The coaxial shielding ensures that only the probe tip interacts with the sample. The structure of the cantilever is designed to be symmetric to balance the stresses and thermal expansions of different layers so that the cantilever remains straight under variable temperatures. Such shielded cantilever probes produced in the wafer scale will facilitate enormous applications on nanoscale dielectric and conductivity imaging.
Real-space mapping of doping concentration in semiconductor devices is of great importance for the microelectronic industry. In this work, a scanning microwave impedance microscope (MIM) is employed to resolve the local conductivity distribution of a static random access memory (SRAM) sample. The MIM electronics can also be adjusted to the scanning capacitance microscopy (SCM) mode, allowing both measurements on the same region. Interestingly, while the conventional SCM images match the nominal device structure, the MIM results display certain unexpected features, which originate from a thin layer of the dopant ions penetrating through the protective layers during the heavy implantation steps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا