ترغب بنشر مسار تعليمي؟ اضغط هنا

Human-Object Interaction (HOI) detection is an important problem to understand how humans interact with objects. In this paper, we explore interactiveness knowledge which indicates whether a human and an object interact with each other or not. We fou nd that interactiveness knowledge can be learned across HOI datasets and bridge the gap between diverse HOI category settings. Our core idea is to exploit an interactiveness network to learn the general interactiveness knowledge from multiple HOI datasets and perform Non-Interaction Suppression (NIS) before HOI classification in inference. On account of the generalization ability of interactiveness, interactiveness network is a transferable knowledge learner and can be cooperated with any HOI detection models to achieve desirable results. We utilize the human instance and body part features together to learn the interactiveness in hierarchical paradigm, i.e., instance-level and body part-level interactivenesses. Thereafter, a consistency task is proposed to guide the learning and extract deeper interactive visual clues. We extensively evaluate the proposed method on HICO-DET, V-COCO, and a newly constructed PaStaNet-HOI dataset. With the learned interactiveness, our method outperforms state-of-the-art HOI detection methods, verifying its efficacy and flexibility. Code is available at https://github.com/DirtyHarryLYL/Transferable-Interactiveness-Network.
Keypoint detection is an essential component for the object registration and alignment. However, previous works mainly focused on how to register keypoints under arbitrary rigid transformations. Differently, in this work, we reckon keypoints under an information compression scheme to represent the whole object. Based on this, we propose UKPGAN, an unsupervised 3D keypoint detector where keypoints are detected so that they could reconstruct the original object shape. Two modules: GAN-based keypoint sparsity control and salient information distillation modules are proposed to locate those important keypoints. Extensive experiments show that our keypoints preserve the semantic information of objects and align well with human annotated part and keypoint labels. Furthermore, we show that UKPGAN can be applied to either rigid objects or non-rigid SMPL human bodies under arbitrary pose deformations. As a keypoint detector, our model is stable under both rigid and non-rigid transformations, with local reference frame estimation. Our code is available on https://github.com/qq456cvb/UKPGAN.
Human-Object Interaction (HOI) consists of human, object and implicit interaction/verb. Different from previous methods that directly map pixels to HOI semantics, we propose a novel perspective for HOI learning in an analytical manner. In analogy to Harmonic Analysis, whose goal is to study how to represent the signals with the superposition of basic waves, we propose the HOI Analysis. We argue that coherent HOI can be decomposed into isolated human and object. Meanwhile, isolated human and object can also be integrated into coherent HOI again. Moreover, transformations between human-object pairs with the same HOI can also be easier approached with integration and decomposition. As a result, the implicit verb will be represented in the transformation function space. In light of this, we propose an Integration-Decomposition Network (IDN) to implement the above transformations and achieve state-of-the-art performance on widely-used HOI detection benchmarks. Code is available at https://github.com/DirtyHarryLYL/HAKE-Action-Torch/tree/IDN-(Integrating-Decomposing-Network).
126 - Yong-Lu Li , Xinpeng Liu , Han Lu 2020
Human-Object Interaction (HOI) detection lies at the core of action understanding. Besides 2D information such as human/object appearance and locations, 3D pose is also usually utilized in HOI learning since its view-independence. However, rough 3D b ody joints just carry sparse body information and are not sufficient to understand complex interactions. Thus, we need detailed 3D body shape to go further. Meanwhile, the interacted object in 3D is also not fully studied in HOI learning. In light of these, we propose a detailed 2D-3D joint representation learning method. First, we utilize the single-view human body capture method to obtain detailed 3D body, face and hand shapes. Next, we estimate the 3D object location and size with reference to the 2D human-object spatial configuration and object category priors. Finally, a joint learning framework and cross-modal consistency tasks are proposed to learn the joint HOI representation. To better evaluate the 2D ambiguity processing capacity of models, we propose a new benchmark named Ambiguous-HOI consisting of hard ambiguous images. Extensive experiments in large-scale HOI benchmark and Ambiguous-HOI show impressive effectiveness of our method. Code and data are available at https://github.com/DirtyHarryLYL/DJ-RN.
Existing image-based activity understanding methods mainly adopt direct mapping, i.e. from image to activity concepts, which may encounter performance bottleneck since the huge gap. In light of this, we propose a new path: infer human part states fir st and then reason out the activities based on part-level semantics. Human Body Part States (PaSta) are fine-grained action semantic tokens, e.g. <hand, hold, something>, which can compose the activities and help us step toward human activity knowledge engine. To fully utilize the power of PaSta, we build a large-scale knowledge base PaStaNet, which contains 7M+ PaSta annotations. And two corresponding models are proposed: first, we design a model named Activity2Vec to extract PaSta features, which aim to be general representations for various activities. Second, we use a PaSta-based Reasoning method to infer activities. Promoted by PaStaNet, our method achieves significant improvements, e.g. 6.4 and 13.9 mAP on full and one-shot sets of HICO in supervised learning, and 3.2 and 4.2 mAP on V-COCO and images-based AVA in transfer learning. Code and data are available at http://hake-mvig.cn/.
114 - Yong-Lu Li , Yue Xu , Xiaohan Mao 2020
Attributes and objects can compose diverse compositions. To model the compositional nature of these general concepts, it is a good choice to learn them through transformations, such as coupling and decoupling. However, complex transformations need to satisfy specific principles to guarantee the rationality. In this paper, we first propose a previously ignored principle of attribute-object transformation: Symmetry. For example, coupling peeled-apple with attribute peeled should result in peeled-apple, and decoupling peeled from apple should still output apple. Incorporating the symmetry principle, a transformation framework inspired by group theory is built, i.e. SymNet. SymNet consists of two modules, Coupling Network and Decoupling Network. With the group axioms and symmetry property as objectives, we adopt Deep Neural Networks to implement SymNet and train it in an end-to-end paradigm. Moreover, we propose a Relative Moving Distance (RMD) based recognition method to utilize the attribute change instead of the attribute pattern itself to classify attributes. Our symmetry learning can be utilized for the Compositional Zero-Shot Learning task and outperforms the state-of-the-art on widely-used benchmarks. Code is available at https://github.com/DirtyHarryLYL/SymNet.
Human activity understanding is crucial for building automatic intelligent system. With the help of deep learning, activity understanding has made huge progress recently. But some challenges such as imbalanced data distribution, action ambiguity, com plex visual patterns still remain. To address these and promote the activity understanding, we build a large-scale Human Activity Knowledge Engine (HAKE) based on the human body part states. Upon existing activity datasets, we annotate the part states of all the active persons in all images, thus establish the relationship between instance activity and body part states. Furthermore, we propose a HAKE based part state recognition model with a knowledge extractor named Activity2Vec and a corresponding part state based reasoning network. With HAKE, our method can alleviate the learning difficulty brought by the long-tail data distribution, and bring in interpretability. Now our HAKE has more than 7 M+ part state annotations and is still under construction. We first validate our approach on a part of HAKE in this preliminary paper, where we show 7.2 mAP performance improvement on Human-Object Interaction recognition, and 12.38 mAP improvement on the one-shot subsets.
Human-Object Interaction (HOI) Detection is an important problem to understand how humans interact with objects. In this paper, we explore Interactiveness Knowledge which indicates whether human and object interact with each other or not. We found th at interactiveness knowledge can be learned across HOI datasets, regardless of HOI category settings. Our core idea is to exploit an Interactiveness Network to learn the general interactiveness knowledge from multiple HOI datasets and perform Non-Interaction Suppression before HOI classification in inference. On account of the generalization of interactiveness, interactiveness network is a transferable knowledge learner and can be cooperated with any HOI detection models to achieve desirable results. We extensively evaluate the proposed method on HICO-DET and V-COCO datasets. Our framework outperforms state-of-the-art HOI detection results by a great margin, verifying its efficacy and flexibility. Code is available at https://github.com/DirtyHarryLYL/Transferable-Interactiveness-Network.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا