ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical doping is one of the most important strategies for tuning electrical properties of semiconductors, particularly thermoelectric materials. Generally, the main role of chemical doping lies in optimizing the carrier concentration, but there can potentially be other important effects. Here, we show that chemical doping plays multiple roles for both electron and phonon transport properties in half-Heusler thermoelectric materials. With ZrNiSn-based half-Heusler materials as an example, we use high-quality single and polycrystalline crystals, various probes, including electrical transport measurements, inelastic neutron scattering measurement, and first-principles calculations, to investigate the underlying electron-phonon interaction. We find that chemical doping brings strong screening effects to ionized impurities, grain boundary, and polar optical phonon scattering, but has negligible influence on lattice thermal conductivity. Furthermore, it is possible to establish a carrier scattering phase diagram, which can be used to select reasonable strategies for optimization of the thermoelectric performance.
128 - Yanling Zhu , Kai Wang , Yong Ren 2019
In this paper, we consider a mean-reverting stochastic volatility equation with regime switching, and present some sufficient conditions for the existence of global positive solution, asymptotic boundedness in pth moment, positive recurrence and exis tence of stationary distribution of this equation. Some results obtained in this paper extend the ones in literature. Example is given to verify the results by simulation.
174 - Yanling Zhu , Kai Wang , Yong Ren 2019
In this paper, we investigate the global existence of almost surely positive solution to a stochastic Nicholsons blowflies delay differential equation with regime switching, and give the estimation of the path. The results presented in this paper ext end some corresponding results in Wang et al. Stochastic Nicholsons Blowflies Delayed Differential Equations, Appl. Math. Lett. 87 (2019) 20-26.
Computing gravity field of a mass body is a core routine to image anomalous density structures in the Earth. In this study, we report the existence of analytical routines to accurately compute the gravity potential and gravity field of a general poly hedral mass body. The density contrasts in the polyhedral body can be general polynomial functions up to arbitrary non-negative orders and also can vary in both horizontal and vertical directions. The newly derived analytical expressions of gravity fields are also singularity-free which means that observation sites can have arbitrary geometric relationships with polyhedral mass bodies. One synthetic prismatic body with different density contrasts is used to verify the accuracies of our new closed-form solutions. Excellent agreements are obtained among our solutions and other published solutions. Our work is the first-of-its kind to completely answer the fundamental question on existence of analytic solutions of gravitational field for general mass bodies. It may put an end of searching closed-form solutions in gravity surveying.
Robotics systems are complex, often consisted of basic services including SLAM for localization and mapping, Convolution Neural Networks for scene understanding, and Speech Recognition for user interaction, etc. Meanwhile, robots are mobile and usual ly have tight energy constraints, integrating these services onto an embedded platform with around 10 W of power consumption is critical to the proliferation of mobile robots. In this paper, we present a case study on integrating real-time localization, vision, and speech recognition services on a mobile SoC, Nvidia Jetson TX1, within about 10 W of power envelope. In addition, we explore whether offloading some of the services to cloud platform can lead to further energy efficiency while meeting the real-time requirements
For a connected graph $G$ on $n$ vertices, recall that the distance signless Laplacian matrix of $G$ is defined to be $mathcal{Q}(G)=Tr(G)+mathcal{D}(G)$, where $mathcal{D}(G)$ is the distance matrix, $Tr(G)=diag(D_1, D_2, ldots, D_n)$ and $D_{i}$ is the row sum of $mathcal{D}(G)$ corresponding to vertex $v_{i}$. Denote by $rho^{mathcal{D}}(G),$ $rho_{min}^{mathcal{D}}(G)$ the largest eigenvalue and the least eigenvalue of $mathcal{D}(G)$, respectively. And denote by $q^{mathcal{D}}(G)$, $q_{min}^{mathcal{D}}(G)$ the largest eigenvalue and the least eigenvalue of $mathcal{Q}(G)$, respectively. The distance spread of a graph $G$ is defined as $S_{mathcal{D}}(G)=rho^{mathcal{D}}(G)- rho_{min}^{mathcal{D}}(G)$, and the distance signless Laplacian spread of a graph $G$ is defined as $S_{mathcal{Q}}(G)=q^{mathcal{D}}(G)-q_{min}^{mathcal{D}}(G)$. In this paper, we point out an error in the result of Theorem 2.4 in Distance spectral spread of a graph [G.L. Yu, et al, Discrete Applied Mathematics. 160 (2012) 2474--2478] and rectify it. As well, we obtain some lower bounds on ddistance signless Laplacian spread of a graph.
102 - Yong Ren , Jialian Li , Yucen Luo 2016
Maximum mean discrepancy (MMD) has been successfully applied to learn deep generative models for characterizing a joint distribution of variables via kernel mean embedding. In this paper, we present conditional generative moment- matching networks (C GMMN), which learn a conditional distribution given some input variables based on a conditional maximum mean discrepancy (CMMD) criterion. The learning is performed by stochastic gradient descent with the gradient calculated by back-propagation. We evaluate CGMMN on a wide range of tasks, including predictive modeling, contextual generation, and Bayesian dark knowledge, which distills knowledge from a Bayesian model by learning a relatively small CGMMN student network. Our results demonstrate competitive performance in all the tasks.
148 - Yong Ren , Xiliang Fan 2008
In this paper, we deal with a class of reflected backward stochastic differential equations associated to the subdifferential operator of a lower semi-continuous convex function driven by Teugels martingales associated with L{e}vy process. We obtain the existence and uniqueness of solutions to these equations by means of the penalization method. As its application, we give a probabilistic interpretation for the solutions of a class of partial differential-integral inclusions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا