ترغب بنشر مسار تعليمي؟ اضغط هنا

A fireball of QGP is evoluted at temperature dependent chemical potential by a statistical model in the pionic medium. We study the dilepton emission rate at temperature dependent chemical potential (TDCP) from such a fireball of QGP. In this model, we take the dynamical quark mass as a finite value dependence on temparature and parametrization factor of the QGP evolution. The temperature and factor in quark mass enhance in the growth of the droplets as well as in the dilepton emission rates. The emission rate from the plasma shows dilepton spectrum in the intermediate mass region (IMR) of (1.0-4.0) GeV and its rate is observed to be a strong increasing function of the temperature dependent chemical potential for quark and antiquark annihilation.
The free energy of a Quark-Gluon Plasma fireball in the hadronic medium is calculated in the Ramanathan et al. statistical model including the effect of curvature. The result with this curvature is found to produce significant improvement from earlie r results in all the parameters we calculated. The surface tension with this curvature effect is found to be $ 0.17 T_{c}^{3}$, which is two times the earlier value of surface tension which is $ 0.078 T_{c}^{3} $, and it is nearly close to the lattice value $0.24 T_{c}^{3} $. The speed of sound calculated with curvature correction is still found to be smaller in comparision with the standard speed of sound in the QGP droplet.
A model of statistical quark-gluon plasma formation is considered.We look the dilepton production at critical temperature $T_{c}sim170 Mev $ and completely free out temperature $T=150 MeV$ with the initial temperature as $T_{0}=570,400 (250) MeV$. No w we consider that quark mass is depending on the coupling value through parameterisation factor of the fireball formation and temperature. The rate of production is shown for invariant mass $M$ at the particular value of $ E=2.0,3.0 GeV$.It shows the significant production of leptons in this process for small value of invariant mass. However, the quark-hadron phase transition is a very weakly changed in the entropy of the system during this process of hadronisation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا