ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y$_2$Ir$_2$O$_7$ and Pr$_2$Ir$_2$O$_7$. The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion $U>U_c$ in the LSDA+$U$ scheme, with $U_csim1.1$~eV and 1.3~eV for Y$_2$Ir$_2$O$_7$ and Pr$_2$Ir$_2$O$_7$, respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing $U$. For $U=1.3$~eV, Y$_2$Ir$_2$O$_7$ is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment $sim0.5mu_B$/Ir, while Pr$_2$Ir$_2$O$_7$ is barely a paramagnetic semimetal with electron and hole concentrations of $0.016$/Ir, in overall agreements with experiments. With decreasing oxygen position parameter $x$ describing the trigonal compression of IrO$_6$ octahedra, Pr$_2$Ir$_2$O$_7$ is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of $Gamma_8^+$, showing a quadratic band touching, to a $Z_2$ topological insulator.
Within the semiclassical Boltzmann transport theory, the formula for Seebeck coefficient $S$ is derived for an isotropic two-dimensional electron gas (2DEG) system that exhibits anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) originatin g from Berry curvature on their bands. Deviation of $S$ from the value $S_0$ estimated neglecting Berry curvarture is computed for a special case of 2DEG with Zeeman and Rashba terms. The result shows that, under certain conditions the contribution of Berry curvature to Seebeck effect could be non-negligible. Further study is needed to clarify the effect of additional contributions from mechanisms of AHE and ANE other than pure Berry curvature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا