ترغب بنشر مسار تعليمي؟ اضغط هنا

The backbone of traditional CNN classifier is generally considered as a feature extractor, followed by a linear layer which performs the classification. We propose a novel loss function, termed as CAM-loss, to constrain the embedded feature maps with the class activation maps (CAMs) which indicate the spatially discriminative regions of an image for particular categories. CAM-loss drives the backbone to express the features of target category and suppress the features of non-target categories or background, so as to obtain more discriminative feature representations. It can be simply applied in any CNN architecture with neglectable additional parameters and calculations. Experimental results show that CAM-loss is applicable to a variety of network structures and can be combined with mainstream regularization methods to improve the performance of image classification. The strong generalization ability of CAM-loss is validated in the transfer learning and few shot learning tasks. Based on CAM-loss, we also propose a novel CAAM-CAM matching knowledge distillation method. This method directly uses the CAM generated by the teacher network to supervise the CAAM generated by the student network, which effectively improves the accuracy and convergence rate of the student network.
Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different input s, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed systematically. Finally, we discuss the open problems in this field together with interesting future research directions.
87 - Le Yang , Yizeng Han , Xi Chen 2020
Adaptive inference is an effective mechanism to achieve a dynamic tradeoff between accuracy and computational cost in deep networks. Existing works mainly exploit architecture redundancy in network depth or width. In this paper, we focus on spatial r edundancy of input samples and propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying easy inputs containing large objects with prototypical features, while only some hard samples need spatially detailed information. In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations, and those samples with high prediction confidence will exit early from the network without being further processed. Meanwhile, high-resolution paths in the network maintain the capability to recognize the hard samples. Therefore, RANet can effectively reduce the spatial redundancy involved in inferring high-resolution inputs. Empirically, we demonstrate the effectiveness of the proposed RANet on the CIFAR-10, CIFAR-100 and ImageNet datasets in both the anytime prediction setting and the budgeted batch classification setting.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا