ترغب بنشر مسار تعليمي؟ اضغط هنا

Nowadays, multi-sensor technologies are applied in many fields, e.g., Health Care (HC), Human Activity Recognition (HAR), and Industrial Control System (ICS). These sensors can generate a substantial amount of multivariate time-series data. Unsupervi sed anomaly detection on multi-sensor time-series data has been proven critical in machine learning researches. The key challenge is to discover generalized normal patterns by capturing spatial-temporal correlation in multi-sensor data. Beyond this challenge, the noisy data is often intertwined with the training data, which is likely to mislead the model by making it hard to distinguish between the normal, abnormal, and noisy data. Few of previous researches can jointly address these two challenges. In this paper, we propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M). We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD) to better distinguish between the noisy, normal, and abnormal data. Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bidirectional LSTM with Attention) to capture temporal dependence from time-series data. Finally, CAE-M jointly optimizes these two subnetworks. We empirically compare the proposed approach with several state-of-the-art anomaly detection methods on HAR and HC datasets. Experimental results demonstrate that our proposed model outperforms these existing methods.
The success of machine learning applications often needs a large quantity of data. Recently, federated learning (FL) is attracting increasing attention due to the demand for data privacy and security, especially in the medical field. However, the per formance of existing FL approaches often deteriorates when there exist domain shifts among clients, and few previous works focus on personalization in healthcare. In this article, we propose FedHealth 2, an extension of FedHealth cite{chen2020fedhealth} to tackle domain shifts and get personalized models for local clients. FedHealth 2 obtains the client similarities via a pretrained model, and then it averages all weighted models with preserving local batch normalization. Wearable activity recognition and COVID-19 auxiliary diagnosis experiments have evaluated that FedHealth 2 can achieve better accuracy (10%+ improvement for activity recognition) and personalized healthcare without compromising privacy and security.
It is expensive and time-consuming to collect sufficient labeled data for human activity recognition (HAR). Domain adaptation is a promising approach for cross-domain activity recognition. Existing methods mainly focus on adapting cross-domain repres entations via domain-level, class-level, or sample-level distribution matching. However, they might fail to capture the fine-grained locality information in activity data. The domain- and class-level matching are too coarse that may result in under-adaptation, while sample-level matching may be affected by the noise seriously and eventually cause over-adaptation. In this paper, we propose substructure-level matching for domain adaptation (SSDA) to better utilize the locality information of activity data for accurate and efficient knowledge transfer. Based on SSDA, we propose an optimal transport-based implementation, Substructural Optimal Transport (SOT), for cross-domain HAR. We obtain the substructures of activities via clustering methods and seeks the coupling of the weighted substructures between different domains. We conduct comprehensive experiments on four public activity recognition datasets (i.e. UCI-DSADS, UCI-HAR, USC-HAD, PAMAP2), which demonstrates that SOT significantly outperforms other state-of-the-art methods w.r.t classification accuracy (9%+ improvement). In addition, our mehtod is 5x faster than traditional OT-based DA methods with the same hyper-parameters.
Ubiquitous systems with End-Edge-Cloud architecture are increasingly being used in healthcare applications. Federated Learning (FL) is highly useful for such applications, due to silo effect and privacy preserving. Existing FL approaches generally do not account for disparities in the quality of local data labels. However, the clients in ubiquitous systems tend to suffer from label noise due to varying skill-levels, biases or malicious tampering of the annotators. In this paper, we propose Federated Opportunistic Computing for Ubiquitous Systems (FOCUS) to address this challenge. It maintains a small set of benchmark samples on the FL server and quantifies the credibility of the client local data without directly observing them by computing the mutual cross-entropy between performance of the FL model on the local datasets and that of the client local FL model on the benchmark dataset. Then, a credit weighted orchestration is performed to adjust the weight assigned to clients in the FL model based on their credibility values. FOCUS has been experimentally evaluated on both synthetic data and real-world data. The results show that it effectively identifies clients with noisy labels and reduces their impact on the model performance, thereby significantly outperforming existing FL approaches.
The recent advances in deep transfer learning reveal that adversarial learning can be embedded into deep networks to learn more transferable features to reduce the distribution discrepancy between two domains. Existing adversarial domain adaptation m ethods either learn a single domain discriminator to align the global source and target distributions or pay attention to align subdomains based on multiple discriminators. However, in real applications, the marginal (global) and conditional (local) distributions between domains are often contributing differently to the adaptation. There is currently no method to dynamically and quantitatively evaluate the relative importance of these two distributions for adversarial learning. In this paper, we propose a novel Dynamic Adversarial Adaptation Network (DAAN) to dynamically learn domain-invariant representations while quantitatively evaluate the relative importance of global and local domain distributions. To the best of our knowledge, DAAN is the first attempt to perform dynamic adversarial distribution adaptation for deep adversarial learning. DAAN is extremely easy to implement and train in real applications. We theoretically analyze the effectiveness of DAAN, and it can also be explained in an attention strategy. Extensive experiments demonstrate that DAAN achieves better classification accuracy compared to state-of-the-art deep and adversarial methods. Results also imply the necessity and effectiveness of the dynamic distribution adaptation in adversarial transfer learning.
Transfer learning aims to learn robust classifiers for the target domain by leveraging knowledge from a source domain. Since the source and the target domains are usually from different distributions, existing methods mainly focus on adapting the cro ss-domain marginal or conditional distributions. However, in real applications, the marginal and conditional distributions usually have different contributions to the domain discrepancy. Existing methods fail to quantitatively evaluate the different importance of these two distributions, which will result in unsatisfactory transfer performance. In this paper, we propose a novel concept called Dynamic Distribution Adaptation (DDA), which is capable of quantitatively evaluating the relative importance of each distribution. DDA can be easily incorporated into the framework of structural risk minimization to solve transfer learning problems. On the basis of DDA, we propose two novel learning algorithms: (1) Manifold Dynamic Distribution Adaptation (MDDA) for traditional transfer learning, and (2) Dynamic Distribution Adaptation Network (DDAN) for deep transfer learning. Extensive experiments demonstrate that MDDA and DDAN significantly improve the transfer learning performance and setup a strong baseline over the latest deep and adversarial methods on digits recognition, sentiment analysis, and image classification. More importantly, it is shown that marginal and conditional distributions have different contributions to the domain divergence, and our DDA is able to provide good quantitative evaluation of their relative importance which leads to better performance. We believe this observation can be helpful for future research in transfer learning.
Visual domain adaptation aims to learn robust classifiers for the target domain by leveraging knowledge from a source domain. Existing methods either attempt to align the cross-domain distributions, or perform manifold subspace learning. However, the re are two significant challenges: (1) degenerated feature transformation, which means that distribution alignment is often performed in the original feature space, where feature distortions are hard to overcome. On the other hand, subspace learning is not sufficient to reduce the distribution divergence. (2) unevaluated distribution alignment, which means that existing distribution alignment methods only align the marginal and conditional distributions with equal importance, while they fail to evaluate the different importance of these two distributions in real applications. In this paper, we propose a Manifold Embedded Distribution Alignment (MEDA) approach to address these challenges. MEDA learns a domain-invariant classifier in Grassmann manifold with structural risk minimization, while performing dynamic distribution alignment to quantitatively account for the relative importance of marginal and conditional distributions. To the best of our knowledge, MEDA is the first attempt to perform dynamic distribution alignment for manifold domain adaptation. Extensive experiments demonstrate that MEDA shows significant improvements in classification accuracy compared to state-of-the-art traditional and deep methods.
Transfer learning has achieved promising results by leveraging knowledge from the source domain to annotate the target domain which has few or none labels. Existing methods often seek to minimize the distribution divergence between domains, such as t he marginal distribution, the conditional distribution or both. However, these two distances are often treated equally in existing algorithms, which will result in poor performance in real applications. Moreover, existing methods usually assume that the dataset is balanced, which also limits their performances on imbalanced tasks that are quite common in real problems. To tackle the distribution adaptation problem, in this paper, we propose a novel transfer learning approach, named as Balanced Distribution underline{A}daptation~(BDA), which can adaptively leverage the importance of the marginal and conditional distribution discrepancies, and several existing methods can be treated as special cases of BDA. Based on BDA, we also propose a novel Weighted Balanced Distribution Adaptation~(W-BDA) algorithm to tackle the class imbalance issue in transfer learning. W-BDA not only considers the distribution adaptation between domains but also adaptively changes the weight of each class. To evaluate the proposed methods, we conduct extensive experiments on several transfer learning tasks, which demonstrate the effectiveness of our proposed algorithms over several state-of-the-art methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا