ترغب بنشر مسار تعليمي؟ اضغط هنا

The ubiquitous use of IoT and machine learning applications is creating large amounts of data that require accurate and real-time processing. Although edge-based smart data processing can be enabled by deploying pretrained models, the energy and memo ry constraints of edge devices necessitate distributed deep learning between the edge and the cloud for complex data. In this paper, we propose a distributed AI system to exploit both the edge and the cloud for training and inference. We propose a new architecture, MEANet, with a main block, an extension block, and an adaptive block for the edge. The inference process can terminate at either the main block, the extension block, or the cloud. The MEANet is trained to categorize inputs into easy/hard/complex classes. The main block identifies instances of easy/hard classes and classifies easy classes with high confidence. Only data with high probabilities of belonging to hard classes would be sent to the extension block for prediction. Further, only if the neural network at the edge shows low confidence in the prediction, the instance is considered complex and sent to the cloud for further processing. The training technique lends to the majority of inference on edge devices while going to the cloud only for a small set of complex jobs, as determined by the edge. The performance of the proposed system is evaluated via extensive experiments using modified models of ResNets and MobileNetV2 on CIFAR-100 and ImageNet datasets. The results show that the proposed distributed model has improved accuracy and energy consumption, indicating its capacity to adapt.
The pervasiveness of Internet-of-Things in our daily life has led to a recent surge in fog computing, encompassing a collaboration of cloud computing and edge intelligence. To that effect, deep learning has been a major driving force towards enabling such intelligent systems. However, growing model sizes in deep learning pose a significant challenge towards deployment in resource-constrained edge devices. Moreover, in a distributed intelligence environment, efficient workload distribution is necessary between edge and cloud systems. To address these challenges, we propose a conditionally deep hybrid neural network for enabling AI-based fog computing. The proposed network can be deployed in a distributed manner, consisting of quantized layers and early exits at the edge and full-precision layers on the cloud. During inference, if an early exit has high confidence in the classification results, it would allow samples to exit at the edge, and the deeper layers on the cloud are activated conditionally, which can lead to improved energy efficiency and inference latency. We perform an extensive design space exploration with the goal of minimizing energy consumption at the edge while achieving state-of-the-art classification accuracies on image classification tasks. We show that with binarized layers at the edge, the proposed conditional hybrid network can process 65% of inferences at the edge, leading to 5.5x computational energy reduction with minimal accuracy degradation on CIFAR-10 dataset. For the more complex dataset CIFAR-100, we observe that the proposed network with 4-bit quantization at the edge achieves 52% early classification at the edge with 4.8x energy reduction. The analysis gives us insights on designing efficient hybrid networks which achieve significantly higher energy efficiency than full-precision networks for edge-cloud based distributed intelligence systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا