ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron spectroscopy measurements reveal short-range spin correlations near and above the ferromagnetic-paramagnetic phase transition in manganite materials of the form La$_{1-x}A_{x}$MnO$_{3}$, including samples with an insulating ground state as we ll as colossal magnetoresistive samples with a metallic ground state. Quasielastic magnetic scattering is revealed that forms clear ridges running along the [100]-type directions in momentum space. A simple model consisting of a conduction electron hopping between spin polarized Mn ions that becomes self-trapped after a few hops captures the essential physics of this magnetic component of the scattering. We associate this scattering component with the magnetic part of diffuse polarons, as we observe a temperature dependence similar to that of the diffuse structural scattering arising from individual polarons.
372 - Yiming Qiu , Wei Bao , Yang Zhao 2009
Neutron scattering is used to probe magnetic excitations in FeSe_{0.4}Te_{0.6} (T_c=14 K). Low energy spin fluctuations are found with a characteristic wave vector $(0.5,0.5,L)$ that corresponds to Fermi surface nesting and differs from Q_m=(delta,0, 0.5) for magnetic ordering in Fe_{1+y}Te. A spin resonance with hbarOmega_0=6.5 meV approx 5.3 k_BT_c and hbarGamma=1.25 meV develops in the superconducting state from a normal state continuum. We show that the resonance is consistent with a bound state associated with s+/- superconductivity and imperfect quasi-2D Fermi surface nesting.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا