ترغب بنشر مسار تعليمي؟ اضغط هنا

For a nonnegative weakly irreducible tensor $mathcal{A}$, we give some characterizations of the spectral radius of $mathcal{A}$, by using the digraph of tensors. As applications, some bounds on the spectral radius of the adjacency tensor and the sign less Laplacian tensor of the $k$-uniform hypergraphs are shown.
In this paper, we show that if a lower-order Hankel tensor is positive semi-definite (or positive definite, or negative semi-definite, or negative definite, or SOS), then its associated higher-order Hankel tensor with the same generating vector, wher e the higher order is a multiple of the lower order, is also positive semi-definite (or positive definite, or negative semi-definite, or negative definite, or SOS, respectively). Furthermore, in this case, the extremal H-eigenvalues of the higher order tensor are bounded by the extremal H-eigenvalues of the lower order tensor, multiplied with some constants. Based on this inheritance property, we give a concrete sum-of-squares decomposition for each strong Hankel tensor. Then we prove the second inheritance property of Hankel tensors, i.e., a Hankel tensor has no negative (or non-positive, or positive, or nonnegative) H-eigenvalues if the associated Hankel matrix of that Hankel tensor has no negative (or non-positive, or positive, or nonnegative, respectively) eigenvalues. In this case, the extremal H-eigenvalues of the Hankel tensor are also bounded by the extremal eigenvalues of the associated Hankel matrix, multiplied with some constants. The third inheritance property of Hankel tensors is raised as a conjecture.
This paper is contributed to a fast algorithm for Hankel tensor-vector products. For this purpose, we first discuss a special class of Hankel tensors that can be diagonalized by the Fourier matrix, which is called emph{anti-circulant} tensors. Then w e obtain a fast algorithm for Hankel tensor-vector products by embedding a Hankel tensor into a larger anti-circulant tensor. The computational complexity is about $mathcal{O}(m^2 n log mn)$ for a square Hankel tensor of order $m$ and dimension $n$, and the numerical examples also show the efficiency of this scheme. Moreover, the block version for multi-level block Hankel tensors is discussed as well. Finally, we apply the fast algorithm to exponential data fitting and the block version to 2D exponential data fitting for higher performance.
The M-matrix is an important concept in matrix theory, and has many applications. Recently, this concept has been extended to higher order tensors [18]. In this paper, we establish some important properties of M-tensors and nonsingular M-tensors. An M-tensor is a Z-tensor. We show that a Z-tensor is a nonsingular M-tensor if and only if it is semi-positive. Thus, a nonsingular M-tensor has all positive diagonal entries; and an M-tensor, regarding as the limitation of a series of nonsingular M-tensors, has all nonnegative diagonal entries. We introduce even-order monotone tensors and present their spectral properties. In matrix theory, a Z-matrix is a nonsingular M-matrix if and only if it is monotone. This is no longer true in the case of higher order tensors. We show that an even-order monotone Z-tensor is an even-order nonsingular M-tensor but not vice versa. An example of an even-order nontrivial monotone Z-tensor is also given.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا