ترغب بنشر مسار تعليمي؟ اضغط هنا

62 - James Palmer , Jan Kunc , Yike Hu 2014
Structured growth of high quality graphene is necessary for technological development of carbon based electronics. Specifically, control of the bunching and placement of surface steps under epitaxial graphene on SiC is an important consideration for graphene device production. We demonstrate lithographically patterned evaporated amorphous carbon corrals as a method to pin SiC surface steps. Evaporated amorphous carbon is an ideal step-flow barrier on SiC due to its chemical compatibility with graphene growth and its structural stability at high temperatures, as well as its patternability. The amorphous carbon is deposited in vacuum on SiC prior to graphene growth. In the graphene furnace at temperatures above 1200$^circ$C, mobile SiC steps accumulate at these amorphous carbon barriers, forming an aligned step free region for graphene growth at temperatures above 1330$^circ$C. AFM imaging and Raman spectroscopy support the formation of quality step-free graphene sheets grown on SiC with the step morphology aligned to the carbon grid.
97 - Jan Kunc , Yike Hu , James Palmer 2013
A method is proposed to extract pure Raman spectrum of epitaxial graphene on SiC by using a Non-negative Matrix Factorization. It overcomes problems of negative spectral intensity and poorly resolved spectra resulting from a simple subtraction of a S iC background from the experimental data. We also show that the method is similar to deconvolution, for spectra composed of multiple sub- micrometer areas, with the advantage that no prior information on the impulse response functions is needed. We have used this property to characterize the Raman laser beam. The method capability in efficient data smoothing is also demonstrated.
252 - Yike Hu , Ming Ruan , Zelei Guo 2012
Graphene is generally considered to be a strong candidate to succeed silicon as an electronic material. However, to date, it actually has not yet demonstrated capabilities that exceed standard semiconducting materials. Currently demonstrated viable g raphene devices are essentially limited to micron size ultrahigh frequency analog field effect transistors and quantum Hall effect devices for metrology. Nanoscopically patterned graphene tends to have disordered edges that severely reduce mobilities thereby obviating its advantage over other materials. Here we show that graphene grown on structured silicon carbide surfaces overcomes the edge roughness and promises to provide an inroad into nanoscale patterning of graphene. We show that high quality ribbons and rings can be made using this technique. We also report on progress towards high mobility graphene monolayers on silicon carbide for device applications.
131 - Xiaosong Wu , Yike Hu , Ming Ruan 2011
The thermoelectric response of high mobility single layer epitaxial graphene on silicon carbide substrates as a function of temperature and magnetic field have been investigated. For the temperature dependence of the thermopower, a strong deviation f rom the Mott relation has been observed even when the carrier density is high, which reflects the importance of the screening effect. In the quantum Hall regime, the amplitude of the thermopower peaks is lower than a quantum value predicted by theories, despite the high mobility of the sample. A systematic reduction of the amplitude with decreasing temperature suggests that the suppression of the thermopower is intrinsic to Dirac electrons in graphene.
205 - Xiaosong Wu , Yike Hu , Ming Ruan 2009
The quantum Hall effect, with a Berrys phase of $pi$ is demonstrated here on a single graphene layer grown on the C-face of 4H silicon carbide. The mobility is $sim$ 20,000 cm$^2$/V$cdot$s at 4 K and ~15,000 cm$^2$/V$cdot$s at 300 K despite contamina tion and substrate steps. This is comparable to the best exfoliated graphene flakes on SiO$_2$ and an order of magnitude larger than Si-face epitaxial graphene monolayers. These and other properties indicate that C-face epitaxial graphene is a viable platform for graphene-based electronics.
182 - Xiaosong Wu , Yike Hu , Ming Ruan 2009
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The qua ntum Hall effect is shown on epitaxial graphene monolayers that were deliberately grown over substrate steps and subjected to harsh processing procedures, demonstrating the robustness of the epitaxial graphene monolayers and the immunity of their transport properties to temperature, contamination and substrate imperfections. The mobility of the monolayer C-face sample is 19,000 cm^2/Vs. This is an important step towards the realization of epitaxial graphene based electronics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا