ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional (3D) shape recognition has drawn much research attention in the field of computer vision. The advances of deep learning encourage various deep models for 3D feature representation. For point cloud and multi-view data, two popular 3D data modalities, different models are proposed with remarkable performance. However the relation between point cloud and views has been rarely investigated. In this paper, we introduce Point-View Relation Network (PVRNet), an effective network designed to well fuse the view features and the point cloud feature with a proposed relation score module. More specifically, based on the relation score module, the point-single-view fusion feature is first extracted by fusing the point cloud feature and each single view feature with point-singe-view relation, then the point-multi-view fusion feature is extracted by fusing the point cloud feature and the features of different number of views with point-multi-view relation. Finally, the point-single-view fusion feature and point-multi-view fusion feature are further combined together to achieve a unified representation for a 3D shape. Our proposed PVRNet has been evaluated on ModelNet40 dataset for 3D shape classification and retrieval. Experimental results indicate our model can achieve significant performance improvement compared with the state-of-the-art models.
Mesh is an important and powerful type of data for 3D shapes and widely studied in the field of computer vision and computer graphics. Regarding the task of 3D shape representation, there have been extensive research efforts concentrating on how to r epresent 3D shapes well using volumetric grid, multi-view and point cloud. However, there is little effort on using mesh data in recent years, due to the complexity and irregularity of mesh data. In this paper, we propose a mesh neural network, named MeshNet, to learn 3D shape representation from mesh data. In this method, face-unit and feature splitting are introduced, and a general architecture with available and effective blocks are proposed. In this way, MeshNet is able to solve the complexity and irregularity problem of mesh and conduct 3D shape representation well. We have applied the proposed MeshNet method in the applications of 3D shape classification and retrieval. Experimental results and comparisons with the state-of-the-art methods demonstrate that the proposed MeshNet can achieve satisfying 3D shape classification and retrieval performance, which indicates the effectiveness of the proposed method on 3D shape representation.
In this paper, we present a hypergraph neural networks (HGNN) framework for data representation learning, which can encode high-order data correlation in a hypergraph structure. Confronting the challenges of learning representation for complex data i n real practice, we propose to incorporate such data structure in a hypergraph, which is more flexible on data modeling, especially when dealing with complex data. In this method, a hyperedge convolution operation is designed to handle the data correlation during representation learning. In this way, traditional hypergraph learning procedure can be conducted using hyperedge convolution operations efficiently. HGNN is able to learn the hidden layer representation considering the high-order data structure, which is a general framework considering the complex data correlations. We have conducted experiments on citation network classification and visual object recognition tasks and compared HGNN with graph convolutional networks and other traditional methods. Experimental results demonstrate that the proposed HGNN method outperforms recent state-of-the-art methods. We can also reveal from the results that the proposed HGNN is superior when dealing with multi-modal data compared with existing methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا