ترغب بنشر مسار تعليمي؟ اضغط هنا

Several recent investigations have shown that there is a holographic relationship between the bulk degrees of freedom and the surface degrees of freedom in the spacetime. Furthermore, the entropy on the horizon can produce an entropic force effect on the bulk degrees of freedom. In this paper, we explore the dynamic evolution law of the universe based on the idea of the entropic force and asymptotically holographic equipartition and further analyze the thermodynamic properties of the current model. We get the age of the universe, the relation between the luminosity distance and the redshift factor and the deceleration parameter which are consistent with astronomical observations. In addition, we can well explain the age of the universe and the mechanism of accelerated expansion without introducing dark energy for the evolution history of the universe up to now. We also show that the generalized second law of thermodynamics, the energy balance condition and the energy equipartition relation always hold. More importantly, the energy balance condition is indeed a holographic relation between the bulk degrees of freedom and the surface degrees of freedom of the spacetime. Finally, we analyze the energy conditions and show that the strong energy condition is always violated and the weak energy condition is satisfied when $tleq2t_{0}$ in which $t$ is the time parameter and $t_{0}$ is the age of the universe.
We propose a cosmological scenario which describes the evolution history of the universe based on the particle creation and holographic equipartition. The model attempts to solve the inflation of the early universe and the accelerated expansion of th e present universe without introducing the dark energy from the perspective of thermodynamics. Throughout the evolution of the universe, we assume that the universe always creates particles in some way and holographic equipartition is always satisfied. Further, we choose that the creation rate of particles is proportional to $H^{2}$ in the early universe and to $H$ in the present and late universe, where $H$ is the Hubble parameter. Then we obtain the solutions $a(t)propto e^{alpha t/3}$ and $a(t)propto t^{1/2}$ for the early universe and the solutions $a(t)propto t^{delta}$ and $a(t)propto e^{Ht}$ for the present and late universe, where $alpha$ and $delta$ are the parameters. Finally, we obtain and analyze two important thermodynamic properties for the present model.
Quantum discord and quantum entanglement are resources in some quantum information processing (QIP) models. However, in recent years, the evidence that separable states or classically correlated states can also accomplish QIP is demonstrated. It prov ides a useful tool since such states are easier to prepare. Quantum coherence is a measure of non-classical correlation, containing entanglement and discord as a subset. Nowadays, it is of interest whether quantum coherence can act as a resource in QIP independently or not, without the help from quantum discord or entanglement. In this paper, we show that quantum correlated coherence(a measure of coherence with local parts removed) is also a kind of quantum resource. It is the sufficient and necessary resource for quantum remote state preparation and quantum teleportation.
It has previously been shown that it is more general to describe the evolution of the universe based on the emergence of the space and the energy balance relation. Here we investigate the thermodynamic properties of the universe described by such a m odel. We show that the first law of thermodynamics and the generalized second law of thermodynamics (GSLT) are both satisfied and the weak energy condition are also fulfilled for two typical examples. Finally we examine the physical consistency for the present model.
60 - Congyi Hua , Yi-Xin Chen 2016
We propose a deterministic remote state preparation (RSP) scheme for preparing an arbitrary (including pure and mixed) qubit, where a partially entangled state and finite classical communication are used. To our knowledge, our scheme is the first RSP scheme that fits into this category. One other RSP scheme proposed by Berry shares close features, but can only be used to prepare an arbitrary pure qubit. Even so, our scheme saves classical communication by approximate 1 bit per prepared qubit under equal conditions. When using a maximally entangled state, the classical communication for our scheme is 2 bits, which agrees with Los conjecture on the resource cost. Furthermore Alice can switch between our RSP scheme and a standard teleportation scheme without letting Bob know, which makes the quantum channel multipurpose.
63 - Yu-Lei Feng , Yi-Xin Chen 2015
We show that for the thermal spectrum of Hawking radiation black holes information loss paradox may still be present, even if including the entanglement information stored in the entangled Minkowski vacuum. And to avoid this inconsistency, the spectr um of Hawking radiation must be nonthermal. After reconsidering the derivation of Hawking effect, we find that the thermal spectrum is actually resulted from the geometric optics approximation in deriving the Bogolubov coefficients. When treated a little more accurately, we obtain some nonthermal spectrum for the Hawing radiation, which reduces to the thermal one in the geometric optics approximation.
115 - Yu-Lei Feng , Yi-Xin Chen 2015
We show that particle production by gravitational field, especially the Hawking effect, may be treated as some quantum inertial effect, with the energy of Hawking radiation as some vacuum energy shift. This quantum inertial effect is mainly resulted from some intrinsical energy fluctuation $hbarkappa/c$ for a black hole. In particular, there is an extreme case in which $hbarkappa/c$ is the Planck energy, giving a Planck black hole whose event horizons diameter is one Planck length. Moreover, we also provide a possibility to obtain some positive cosmological constant for an expanding universe, which is induced from the vacuum energy shift caused by quantum inertial effect.
78 - Yu-Lei Feng , Yi-Xin Chen 2015
In this paper, we try to construct black hole thermodynamics based on the fact that, the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy $S_{BH}$ may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black holes first law may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described in a unitary manner effectively, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.
313 - Yu-Lei Feng , Yi-Xin Chen 2014
An alternative approach to decoherence, named non-dynamical decoherence is developed and used to resolve the quantum measurement problem. According to decoherence, the observed system is open to a macroscopic apparatus(together with a possible added environment) in a quantum measurement process. We show that this open system can be well described by an almost quotient Hilbert space formed phenomenally according to some stability conditions. A group of random phase unitary operators is introduced further to obtain an exact quotient space for the observed system. In this quotient space, a density matrix can be constructed to give the Borns probability rule, realizing a (non-dynamical) decoherence. The concept of the (almost) quotient space can also be used to explain the classical properties of a macroscopic system. We show further that the definite outcomes in a quantum measurement are mainly caused by the almost quotient space of the macroscopic apparatus.
56 - Yu-Lei Feng , Yi-Xin Chen 2014
A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPSs firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawkings completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a emph{modified quantum teleportation} to transfer the information via an EPR pairs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا