ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigated the origin of the RI/MOM quark mass under the Landau gauge at the non-perturbative scale, using the chiral fermion with different quark masses and lattice spacings. Our result confirms that such a mass is non-vanishing based on the li near extrapolation to the chiral and continuum limit, and shows that such a mass comes from the spontaneous chiral symmetry breaking induced by the near zero modes with the eigenvalue $lambda<{cal O}(5m_q)$, and is proportional to the quark matrix element of the trace anomaly at least down to $sim $1.3 GeV.
We report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of $N_f = 2+1$ DWF configurations with three lattice spacings and three volu mes, and several pion masses including the physical pion mass. With fully non-perturbative renormalization (and universal normalization on both quark and gluon), we find that the quark energy and glue field energy contribute 33(4)(4)% and 37(5)(4)% respectively in the $overline{MS}$ scheme at $mu = 2$ GeV. A quarter of the trace anomaly gives a 23(1)(1)% contribution to the proton mass based on the sum rule, given 9(2)(1)% contribution from the $u, d,$ and $s$ quark scalar condensates. The $u,d,s$ and glue momentum fractions in the $overline{MS}$ scheme are in good agreement with global analyses at $mu = 2$ GeV.
We present the first nonperturbatively-renormalized determination of the glue momentum fraction $langle x rangle_g$ in the nucleon, based on lattice-QCD simulations at physical pion mass using the cluster-decomposition error reduction (CDER) techniqu e. We provide the first practical strategy to renormalize the glue energy-momentum tensor (EMT) nonperturbatively in the RI/MOM scheme, and convert the results to the $overline{textrm{MS}}$ scheme with 1-loop matching. The simulation results show that the CDER technique can reduce the statistical uncertainty of its renormalization constant by a factor of ${cal O}$(300) in calculations using typical state-of-the-art lattice volume, and the nonperturbatively-renormalized $langle x rangle_g$ is shown to be independent of the lattice definitions of the glue EMT up to discretization errors. We determine the renormalized $langle x rangle_g^{overline{textrm{MS}}}(2textrm{ GeV})$ to be 0.47(4)(11) at physical pion mass, which is consistent with the experimentally-determined value.
We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light and strange disconnected-sea quarks contribution to the nucleon magnetic moment is $mu_M,(text{DI})=-0.022(11)(09),mu_N$ and to the nucleon mean square charge radius is $langle r^2rangle_E,text{(DI)}=-0.019(05)(05)$ fm$^2$ which is about $1/3$ of the difference between the $langle r_p^2rangle_E$ of electron-proton scattering and that of muonic atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about $1%$, a negative $2.5(9)%$ contribution to the proton mean square charge radius and a relatively larger positive $16.3(6.1)%$ contribution to the neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of $0leq Q^2leq 0.5$ GeV$^2$.
We report a lattice calculation of nucleon forward matrix elements on a $48^3 times 96$ lattice at the physical pion mass and a spatial size of 5.5 fm. The $2+1$ flavor dynamical fermion configurations are generated with domain-wall fermions (DWF) an d the overlap fermions are adopted for the valence quarks. The isovector $g_A^3$ and $g_S^3$, and the connected insertion part of $g_S^0$ are reported for three source-sink separations. With local current, we obtain $g_A^3 = 1.18(4)$ from a two-state fit. For the quark momentum fraction $langle x rangle_{u-d}$, we have included smaller lattices (i.e. $24^3 times 64$ and $32^3 times 64$ lattice with pion mass at 330 and 290 MeV respectively) for a fit which includes partially quenched cases as well as finite volume and continuum corrections. A global fit with perturbative renormalization gives $langle x rangle_{u-d} (overline{MS},, mu = 2, {rm GeV}) = 0.170(14)$. We made a cost comparison of calculating the nucleon matrix elements with those from the twisted mass fermion on similar sized lattice at the physical pion point and the domain-wall fermion calculation on the same DWF lattice. We also compare cost with the clover fermion calculation on similar sized lattice at about the same quark mass. The comparison shows that with several improvements, such as many-to-all correlator with grid source and low-mode substitution in the connected insertion and low-mode average in the quark loop can make the overlap as efficient as the twisted-mass and clover fermions in calculating the three-point functions. It is more efficient than the DWF. When the multi-mass feature is invoked, the overlap can be more efficient in reaching the same precision than the single mass comparison made so far.
We report a lattice QCD calculation of the strange quark contribution to the nucleons magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including at the physical pion mass . We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of $0.051 ,text{GeV}^2 lesssim Q^2 lesssim 1.31 ,text{GeV}^2 $. The finite lattice spacing and finite volume corrections are included in a global fit with $24$ valence quark masses on four lattices with different lattice spacings, different volumes, and four sea quark masses including one at the physical pion mass. We obtain the strange magnetic moment $G^s_M(0) = - 0.064(14)(09), mu_N$. The four-sigma precision in statistics is achieved partly due to low-mode averaging of the quark loop and low-mode substitution to improve the statistics of the nucleon propagator. We also obtain the strange charge radius $langle r_s^2rangle_E = -0.0043 (16)(14),$ $text{fm}^2$.
We introduce a stochastic sandwich method with low-mode substitution to evaluate the connected three-point functions. The isovector matrix elements of the nucleon for the axial-vector coupling $g_A^3$, scalar couplings $g_S^3$ and the quark momentum fraction $langle xrangle_{u -d}$ are calculated with overlap fermion on 2+1 flavor domain-wall configurations on a $24^3 times 64$ lattice at $m_{pi} = 330$ MeV with lattice spacing $a = 0.114$ fm.
We report a quark spin calculation from the anomalous Ward identity with overlap fermions on 2+1 flavor dynamical fermion configurations with light sea quark masses. Such a formulation decomposes the divergence of the flavor-singlet axial-vector curr ent into a quark pseudoscalar term and a triangle anomaly term, flavor by flavor. A large negative contribution from the anomaly term is observed and it is canceled within errors by the contribution from the pseudoscalar term in the disconnected insertion in the heavy quark region. On the other hand, net negative contributions are obtained for the light and strange quarks in the disconnected insertion, since their quark pseudoscalar terms are smaller than that of the heavy quark. Our results are obtained from the 2+1 flavor domain wall fermion configurations on the 24^3*64 lattice with a-1 = 1.78(5) GeV and the light sea quark at m_{pi} = 330 MeV. We use the overlap fermion for the valence and the quark loop so that the renormalization constants Z_m and Z_P cancel in the pseudoscalar operator 2mP. In addition, the overlap Dirac operator is used to calculate the local topological charge in the anomaly so that there is no renormalization for the anomaly term either. In this study, we find the total quark spin to be small mainlyly due to the large negative anomaly term which could be the source for the proton spin crisis.
We use overlap fermions as valence quarks to calculate meson masses in a wide quark mass range on the $2+1$-flavor domain-wall fermion gauge configurations generated by the RBC and UKQCD Collaborations. The well-defined quark masses in the overlap fe rmion formalism and the clear valence quark mass dependence of meson masses observed from the calculation facilitate a direct derivation of physical current quark masses through a global fit to the lattice data, which incorporates $O(a^2)$ and $O(m_c^4a^4)$ corrections, chiral extrapolation, and quark mass interpolation. Using the physical masses of $D_s$, $D_s^*$ and $J/psi$ as inputs, Sommers scale parameter $r_0$ and the masses of charm quark and strange quark in the $overline{rm MS}$ scheme are determined to be $r_0=0.465(4)(9)$ fm, $m_c^{overline{rm MS}}(2,{rm GeV})=1.118(6)(24)$ GeV (or $m_c^{overline{rm MS}}(m_c)=1.304(5)(20)$ GeV), and $m_s^{overline{rm MS}}(2,{rm GeV})=0.101(3)(6),{rm GeV}$, respectively. Furthermore, we observe that the mass difference of the vector meson and the pseudoscalar meson with the same valence quark content is proportional to the reciprocal of the square root of the valence quark masses. The hyperfine splitting of charmonium, $M_{J/psi}-M_{eta_c}$, is determined to be 119(2)(7) MeV, which is in good agreement with the experimental value. We also predict the decay constant of $D_s$ to be $f_{D_s}=254(2)(4)$ MeV. The masses of charmonium $P$-wave states $chi_{c0}, chi_{c1}$ and $h_c$ are also in good agreement with experiments.
We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. Both overlap and domain wall fermions have chiral symmetry on the lattice. The scale independent renormalization constant for t he local axial vector current is computed using a Ward Identity. The renormalization constants for the scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are obtained by using perturbative conversion ratios. The analysis uses in total six ensembles with lattice sizes 24^3x64 and 32^3x64.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا