ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we use the Born-Oppenheimer approximation where the potential between atoms can be approximated as a function of distance between the two nuclei to study the four-quark bound states. By the approximation, Heitler and London calculated t he spectrum of hydrogen molecule which includes two protons (heavy) and two electrons (light). Generally, the observed exotic mesons $Z_b(10610)$, $Z_b(10650)$, $Z_c(3900)$ and $Z_c(4020)$($Z_c(4025)$) may be molecular states made of two physical mesons and/or in diquark-anti-diquark structures. In analog to the Heitler-London method for calculating the mass of hydrogen molecule, we investigate whether there exist energy minima for these two structures. By contrary to the hydrogen molecule case where only the spin-triplet possesses an energy minimum, there exist minima for both of them. It implies that both molecule and tetraquark states can be stable objects. But since they have the same quantum numbers, the two states may mix to result in the physical states. A consequence would be that partner exotic states co-existing with $Z_b(10610)$, $Z_b(10650)$, $Z_c(3900)$ and $Z_c(4020)$($Z_c(4025)$) are predicted and should be experimentally observed.
We indicated in our previous work that for QED the role of the scalar potential which appears at the loop level is much smaller than that of the vector potential and in fact negligible. But the situation is different for QCD, one reason is that the l oop effects are more significant because $alpha_s$ is much larger than $alpha$, and secondly the non-perturbative QCD effects may induce a sizable scalar potential. In this work, we phenomenologically study the contribution of the scalar potential to the spectra of charmonia, bottomonia and $bbar c(bar b c)$ family. Taking into account both vector and scalar potentials, by fitting the well measured charmonia and bottomonia spectra, we re-fix the relevant parameters and test them by calculating other states of not only the charmonia, bottomonia, but also further the $bbar c$ family. We also consider the Lamb shift of the spectra.
Besides using the laser beam, it is very tempting to directly testify the Bell inequality at high energy experiments where the spin correlation is exactly what the original Bell inequality investigates. In this work, we follow the proposal raised in literature and use the successive decays $J/psitogammaeta_cto LambdabarLambdato ppi^-bar ppi^+$ to testify the Bell inequality. Our goal is twofold, namely, we first make a Monte-Carlo simulation of the processes based on the quantum field theory (QFT). Since the underlying theory is QFT, it implies that we pre-admit the validity of quantum picture. Even though the QFT is true, we need to find how big the database should be, so that we can clearly show deviations of the correlation from the Bell inequality determined by the local hidden variable theory. There have been some critiques on the proposed method, so in the second part, we suggest some improvements which may help to remedy the ambiguities indicated by the critiques. It may be realized at an updated facility of high energy physics, such as BES III.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا