ترغب بنشر مسار تعليمي؟ اضغط هنا

Safe reinforcement learning aims to learn a control policy while ensuring that neither the system nor the environment gets damaged during the learning process. For implementing safe reinforcement learning on highly nonlinear and high-dimensional dyna mical systems, one possible approach is to find a low-dimensional safe region via data-driven feature extraction methods, which provides safety estimates to the learning algorithm. As the reliability of the learned safety estimates is data-dependent, we investigate in this work how different training data will affect the safe reinforcement learning approach. By balancing between the learning performance and the risk of being unsafe, a data generation method that combines two sampling methods is proposed to generate representative training data. The performance of the method is demonstrated with a three-link inverted pendulum example.
76 - Sheng Cheng , Yang Jiao , Yi Ren 2021
This paper considers the open challenge of identifying complete, concise, and explainable quantitative microstructure representations for disordered heterogeneous material systems. Completeness and conciseness have been achieved through existing data -driven methods, e.g., deep generative models, which, however, do not provide mathematically explainable latent representations. This study investigates representations composed of three-point correlation functions, which are a special type of spatial convolutions. We show that a variety of microstructures can be characterized by a concise subset of three-point correlations, and the identification of such subsets can be achieved by Bayesian optimization. Lastly, we show that the proposed representation can directly be used to compute material properties based on the effective medium theory.
As a key component of talking face generation, lip movements generation determines the naturalness and coherence of the generated talking face video. Prior literature mainly focuses on speech-to-lip generation while there is a paucity in text-to-lip (T2L) generation. T2L is a challenging task and existing end-to-end works depend on the attention mechanism and autoregressive (AR) decoding manner. However, the AR decoding manner generates current lip frame conditioned on frames generated previously, which inherently hinders the inference speed, and also has a detrimental effect on the quality of generated lip frames due to error propagation. This encourages the research of parallel T2L generation. In this work, we propose a novel parallel decoding model for high-speed and high-quality text-to-lip generation (HH-T2L). Specifically, we predict the duration of the encoded linguistic features and model the target lip frames conditioned on the encoded linguistic features with their duration in a non-autoregressive manner. Furthermore, we incorporate the structural similarity index loss and adversarial learning to improve perceptual quality of generated lip frames and alleviate the blurry prediction problem. Extensive experiments conducted on GRID and TCD-TIMIT datasets show that 1) HH-T2L generates lip movements with competitive quality compared with the state-of-the-art AR T2L model DualLip and exceeds the baseline AR model TransformerT2L by a notable margin benefiting from the mitigation of the error propagation problem; and 2) exhibits distinct superiority in inference speed (an average speedup of 19$times$ than DualLip on TCD-TIMIT).
Mass loss is an important activity for red supergiants (RSGs) which can influence their evolution and final fate. Previous estimations of mass loss rates (MLRs) of RSGs exhibit significant dispersion due to the difference in method and the incomplete ness of sample. With the improved quality and depth of the surveys including the UKIRT/WFCAM observation in near infrared, LGGS and PS1 in optical, a rather complete sample of RSGs is identified in M31 and M33 according to their brightness and colors. For about 2000 objects in either galaxy from this ever largest sample, the MLR is derived by fitting the observational optical-to-mid infrared spectral energy distribution (SED) with the DUSTY code of a 1-D dust radiative transfer model. The average MLR of RSGs is found to be around $2.0times10^{-5}{text{M}_odot}/text{yr}$ with a gas-to-dust ratio of 100, which yields a total contribution to the interstellar dust by RSGs of about $1.1times10^{-3}{text{M}_odot}/text{yr}$ in M31 and $6.0 times10^{-4}{text{M}_odot}/text{yr}$ in M33, a non-negligible source in comparison with evolved low-mass stars. The MLRs are divided into three types by the dust properties, i.e. amorphous silicate, amorphous carbon and optically thin, and the relations of MLR with stellar parameters, infrared flux and colors are discussed and compared with previous works for the silicate and carbon dust group respectively.
63 - Dongyang Xu , Pinyi Ren 2021
Secure wireless access in ultra-reliable low-latency communications (URLLC), which is a critical aspect of 5G security, has become increasingly important due to its potential support of grant-free configuration. In grant-free URLLC, precise allocatio n of different pilot resources to different users that share the same time-frequency resource is essential for the next generation NodeB (gNB) to exactly identify those users under access collision and to maintain precise channel estimation required for reliable data transmission. However, this process easily suffers from attacks on pilots. We in this paper propose a quantum learning based nonrandom superimposed coding method to encode and decode pilots on multidimensional resources, such that the uncertainty of attacks can be learned quickly and eliminated precisely. Particularly, multiuser pilots for uplink access are encoded as distinguishable subcarrier activation patterns (SAPs) and gNB decodes pilots of interest from observed SAPs, a superposition of SAPs from access users, by joint design of attack mode detection and user activity detection though a quantum learning network (QLN). We found that the uncertainty lies in the identification process of codeword digits from the attacker, which can be always modelled as a black-box model, resolved by a quantum learning algorithm and quantum circuit. Novel analytical closed-form expressions of failure probability are derived to characterize the reliability of this URLLC system with short packet transmission. Simulations how that our method can bring ultra-high reliability and low latency despite attacks on pilots.
93 - Yi Ren 2020
The aim of this paper is to establish a complete sample of red supergiants (RSGs) in M31 and M33. The member stars of the two galaxies are selected from the near-infrared (NIR) point sources after removing the foreground dwarfs from their obvious bra nch in the $J-H/H-K$ diagram with the archival photometric data taken by the UKIRT/WFCAM. This separation by NIR colors of dwarfs from giants is confirmed by the optical/infrared color-color diagrams ($r-z/z-H$ and $B-V/V-R$), and the Gaia measurement of parallax and proper motion. The RSGs are then identified by their outstanding location in the members $J-K/K$ diagram due to high luminosity and low effective temperature. The resultant sample has 5,498 and 3,055 RSGs in M31 and M33 respectively, which should be complete because the lower limiting $K$ magnitude of RSGs in both cases is brighter than the complete magnitude of the UKIRT photometry. Analysis of the control fields finds that the pollution rate in the RSGs sample is less than 1%. The by-product is the complete sample of oxygen-rich asymptotic giant branch stars (AGBs), carbon-rich AGBs, thermally pulsing AGBs and extreme AGBs. In addition, the tip-RGB is determined together with its implication on the distance modulus to M31 and M33.
Learning discriminative and invariant feature representation is the key to visual image categorization. In this article, we propose a novel invariant deep compressible covariance pooling (IDCCP) to solve nuisance variations in aerial scene categoriza tion. We consider transforming the input image according to a finite transformation group that consists of multiple confounding orthogonal matrices, such as the D4 group. Then, we adopt a Siamese-style network to transfer the group structure to the representation space, where we can derive a trivial representation that is invariant under the group action. The linear classifier trained with trivial representation will also be possessed with invariance. To further improve the discriminative power of representation, we extend the representation to the tensor space while imposing orthogonal constraints on the transformation matrix to effectively reduce feature dimensions. We conduct extensive experiments on the publicly released aerial scene image data sets and demonstrate the superiority of this method compared with state-of-the-art methods. In particular, with using ResNet architecture, our IDCCP model can reduce the dimension of the tensor representation by about 98% without sacrificing accuracy (i.e., <0.5%).
193 - Yi Ren , Jinzheng He , Xu Tan 2020
In pop music, accompaniments are usually played by multiple instruments (tracks) such as drum, bass, string and guitar, and can make a song more expressive and contagious by arranging together with its melody. Previous works usually generate multiple tracks separately and the music notes from different tracks not explicitly depend on each other, which hurts the harmony modeling. To improve harmony, in this paper, we propose a novel MUlti-track MIDI representation (MuMIDI), which enables simultaneous multi-track generation in a single sequence and explicitly models the dependency of the notes from different tracks. While this greatly improves harmony, unfortunately, it enlarges the sequence length and brings the new challenge of long-term music modeling. We further introduce two new techniques to address this challenge: 1) We model multiple note attributes (e.g., pitch, duration, velocity) of a musical note in one step instead of multiple steps, which can shorten the length of a MuMIDI sequence. 2) We introduce extra long-context as memory to capture long-term dependency in music. We call our system for pop music accompaniment generation as PopMAG. We evaluate PopMAG on multiple datasets (LMD, FreeMidi and CPMD, a private dataset of Chinese pop songs) with both subjective and objective metrics. The results demonstrate the effectiveness of PopMAG for multi-track harmony modeling and long-term context modeling. Specifically, PopMAG wins 42%/38%/40% votes when comparing with ground truth musical pieces on LMD, FreeMidi and CPMD datasets respectively and largely outperforms other state-of-the-art music accompaniment generation models and multi-track MIDI representations in terms of subjective and objective metrics.
136 - Jinglin Liu , Yi Ren , Xu Tan 2020
Non-autoregressive translation (NAT) achieves faster inference speed but at the cost of worse accuracy compared with autoregressive translation (AT). Since AT and NAT can share model structure and AT is an easier task than NAT due to the explicit dep endency on previous target-side tokens, a natural idea is to gradually shift the model training from the easier AT task to the harder NAT task. To smooth the shift from AT training to NAT training, in this paper, we introduce semi-autoregressive translation (SAT) as intermediate tasks. SAT contains a hyperparameter k, and each k value defines a SAT task with different degrees of parallelism. Specially, SAT covers AT and NAT as its special cases: it reduces to AT when k = 1 and to NAT when k = N (N is the length of target sentence). We design curriculum schedules to gradually shift k from 1 to N, with different pacing functions and number of tasks trained at the same time. We called our method as task-level curriculum learning for NAT (TCL-NAT). Experiments on IWSLT14 De-En, IWSLT16 En-De, WMT14 En-De and De-En datasets show that TCL-NAT achieves significant accuracy improvements over previous NAT baselines and reduces the performance gap between NAT and AT models to 1-2 BLEU points, demonstrating the effectiveness of our proposed method.
61 - Yi Ren 2020
The mechanism and characteristics of the irregular variations of red supergiants (RSGs) are studied based on the RSG samples in Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and M31. With the time-series data from All-Sky Automated Surve y for SuperNovae (ASAS-SN) and Intermediate Palomar Transient Factory survey, we use the continuous time autoregressive moving average model to estimate the variability features of the light curves and their power spectral density. The characteristic evolution timescale and amplitude of granulations are further derived from fitting the posterior power spectral density with the COR function, which is a Harvey-like granulation model. The consistency of theoretical predictions and results is checked to verify the correctness of the assumption that granulations on RSGs contribute to irregular variation. The relations between granulation and stellar parameters are obtained and compared with the results of red giant branch stars and Betelgeuse. It is found that the relations are in agreement with predictions from basic physical process of granulation and fall close to the extrapolated relations of RGB stars. The granulations in most of the RSGs evolve at a timescale of several days to a year with the characteristic amplitude of 10-1000 mmag. The results imply that the irregular variations of RSGs can be attributed to the evolution of granulations. When comparing the results from SMC, LMC and M31, the timescale and amplitude of granulation seem to increase with metallicity. The analytical relations of the granulation parameters with stellar parameters are derived for the RSG sample of each galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا