ترغب بنشر مسار تعليمي؟ اضغط هنا

How to explore corner cases as efficiently and thoroughly as possible has long been one of the top concerns in the context of deep reinforcement learning (DeepRL) autonomous driving. Training with simulated data is less costly and dangerous than util izing real-world data, but the inconsistency of parameter distribution and the incorrect system modeling in simulators always lead to an inevitable Sim2real gap, which probably accounts for the underperformance in novel, anomalous and risky cases that simulators can hardly generate. Domain Randomization(DR) is a methodology that can bridge this gap with little or no real-world data. Consequently, in this research, an adversarial model is put forward to robustify DeepRL-based autonomous vehicles trained in simulation to gradually surfacing harder events, so that the models could readily transfer to the real world.
70 - Yang Jiao , Yi Niu , Trac D. Tran 2020
In 2D+3D facial expression recognition (FER), existing methods generate multi-view geometry maps to enhance the depth feature representation. However, this may introduce false estimations due to local plane fitting from incomplete point clouds. In th is paper, we propose a novel Map Generation technique from the viewpoint of information theory, to boost the slight 3D expression differences from strong personality variations. First, we examine the HDR depth data to extract the discriminative dynamic range $r_{dis}$, and maximize the entropy of $r_{dis}$ to a global optimum. Then, to prevent the large deformation caused by over-enhancement, we introduce a depth distortion constraint and reduce the complexity from $O(KN^2)$ to $O(KNtau)$. Furthermore, the constrained optimization is modeled as a $K$-edges maximum weight path problem in a directed acyclic graph, and we solve it efficiently via dynamic programming. Finally, we also design an efficient Facial Attention structure to automatically locate subtle discriminative facial parts for multi-scale learning, and train it with a proposed loss function $mathcal{L}_{FA}$ without any facial landmarks. Experimental results on different datasets show that the proposed method is effective and outperforms the state-of-the-art 2D+3D FER methods in both FER accuracy and the output entropy of the generated maps.
Increasing the response time of emergency vehicles(EVs) could lead to an immeasurable loss of property and life. On this account, tactical decision making for EVs microscopic control remains an indispensable issue to be improved. In this paper, a rul e-based avoiding strategy(AS) is devised, that CVs in the prioritized zone ahead of EV should accelerate or change their lane to avoid it. Besides, a novel DQN method with speed-adaptive compact state space (SC-DQN) is put forward to fit in EVs high-speed feature and generalize in various road topologies. Afterward, the execution of AS feedback to the input of SC-DQN so that they joint organically as a combinational method. The following approach reveals that DRL could complement rule-based avoiding strategy in generalization, and on the contrary, the rule-based avoiding strategy could complement DRL in stability, and their combination could lead to less response time, lower collision rate and smoother trajectory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا